• Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, https://doi.org/10.1175/JAS-D-12-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2001: Symmetric stress tensor formulation of horizontal momentum diffusion in global models of atmospheric circulation. J. Atmos. Sci., 58, 269282, https://doi.org/10.1175/1520-0469(2001)058<0269:SSTFOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2003: Frictional heating in global climate models. Mon. Wea. Rev., 131, 508520, https://doi.org/10.1175/1520-0493(2003)131<0508:FHIGCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2009: Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J. Atmos. Sci., 66, 647666, https://doi.org/10.1175/2008JAS2735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2017: Mean-flow effects of thermal tides in the mesosphere and lower thermosphere. J. Atmos. Sci., 74, 20432063, https://doi.org/10.1175/JAS-D-16-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., and G. Schmitz, 2001: Interaction between extratropical stationary waves and the zonal mean circulation. J. Atmos. Sci., 58, 462480, https://doi.org/10.1175/1520-0469(2001)058<0462:IBESWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., and U. Burkhardt, 2007: Nonlinear horizontal diffusion for GCMs. Mon. Wea. Rev., 135, 14391454, https://doi.org/10.1175/MWR3348.1.

  • Becker, E., and S. Brune, 2014: Reply to “Comments on ‘Indications of stratified turbulence in a mechanistic GCM.’” J. Atmos. Sci., 71, 858862, https://doi.org/10.1175/JAS-D-13-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E. and S. L. Vadas, 2018: Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model. J. Geophys. Res. Atmos., 123, 26052627, https://doi.org/10.1002/2017JD027460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., R. Knöpfel, and F.-J. Lübken, 2015: Dynamically induced hemispheric differences in the seasonal cycle of the summer polar mesopause. J. Atmos. Sol.-Terr. Phys., 129, 128141, https://doi.org/10.1016/j.jastp.2015.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierdel, L., C. Snyder, S.-H. Park, and W. C. Skamarock, 2016: Accuracy of rotational and divergent kinetic energy spectra diagnosed from flight track winds. J. Atmos. Sci., 73, 32733286, https://doi.org/10.1175/JAS-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, S., and E. Becker, 2013: Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci., 70, 231247, https://doi.org/10.1175/JAS-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, B. H., A. R. Erler, and T. G. Shepherd, 2013: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses. J. Atmos. Sci., 70, 669687, https://doi.org/10.1175/JAS-D-12-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). Tech. Note TN-464+STR, National Center for Atmospheric Research, Boulder, CO, 214 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • Dunkerton, T. J., 1991: Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving. J. Atmos. Sci., 48, 236263, https://doi.org/10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

    • Crossref
    • Export Citation
  • Gassmann, A., 2018: Entropy production due to subgrid-scale thermal fluxes with application to breaking gravity waves. Quart. J. Roy. Meteor. Soc., 144, 499510, https://doi.org/10.1002/qj.3221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3, 17601765, https://doi.org/10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, https://doi.org/10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., 1993: The influence of tropical heating displacements on the extratropical climate. J. Atmos. Sci., 50, 35533570, https://doi.org/10.1175/1520-0469(1993)050<3553:TIOTHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khani, S., and M. L. Waite, 2015: Large eddy simulations of stratified turbulence: The dynamic Smagorinsky model. J. Fluid Mech., 773, 327344, https://doi.org/10.1017/jfm.2015.249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitsios, V., J. S. Frederiksen, and M. J. Zidikheri, 2012: Subgrid model with scaling laws for atmospheric simulations. J. Atmos. Sci., 69, 14271445, https://doi.org/10.1175/JAS-D-11-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Körnich, H., G. Schmitz, and E. Becker, 2006: The role of stationary waves in the maintenance of the northern annular mode as deduced from model experiments. J. Atmos. Sci., 63, 29312947, https://doi.org/10.1175/JAS3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshyk, J. D., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, https://doi.org/10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1976: Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 15211536, https://doi.org/10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V., J. Kleissl, C. Meneveau, and M. B. Parlange, 2006: Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues. Water Resour. Res., 42, W06D09, https://doi.org/10.1029/2005WR004651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V., G. Svensson, A. A. M. Holtslag, C. Meneveau, and M. B. Parlange, 2010: Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J. Appl. Meteor. Climatol., 49, 14961516, https://doi.org/10.1175/2010JAMC2145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesieur, M., O. Métais, and P. Comte, 2005: Large-Eddy Simulations of Turbulence. Cambridge University Press, 232 pp., https://doi.org/10.1017/CBO9780511755507.

    • Crossref
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. WMO Monogr., Vol. 218, WMO, 161 pp.

  • Mak, M., 1994: Cyclogenesis in a conditionally unstable moist baroclinic atmosphere. Tellus, 46A, 1433, https://doi.org/10.3402/tellusa.v46i1.15424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32, 132, https://doi.org/10.1146/annurev.fluid.32.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Métais, O., and M. Lesieur, 1992: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239, 157194, https://doi.org/10.1017/S0022112092004361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moin, P., and J. Kim, 1982: Numerical investigation of turbulent channel flow. J. Fluid Mech., 118, 341377, https://doi.org/10.1017/S0022112082001116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oberlack, M., 2000: Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz (Symmetry, Invariance, and Self-Similarity in Turbulence; Habilitation). RWTH Aachen, 187 pp.

  • Orszag, S. A., 1971: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci., 28, 1074–1074, https://doi.org/10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, N., and K. Mahesh, 2009: Reduction of the Germano-identity error in the dynamic Smagorinsky model. Phys. Fluids, 21, 065106, https://doi.org/10.1063/1.3140033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., C. Meneveau, and M. B. Parlange, 2000: A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261284, https://doi.org/10.1017/S0022112000008776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1942: Führer durch die Strömungslehre (Essentials of Fluid Mechanics). Fried. Vieweg & Sohn, 105–108 pp.

  • Randel, W. J., 1992: Global atmospheric circulation statistics, 1000-1mb. NCAR Tech. Note NCAR/NT-366+STR, 256 pp.

  • Remmler, S., S. Hickel, M. Fruman, and U. Achatz, 2015: Validation of large-eddy simulation methods for gravity-wave breaking. J. Atmos. Sci., 72, 35373562, https://doi.org/10.1175/JAS-D-14-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech. Rep. 218, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 94 pp., https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/MPI-Report_218.pdf.

  • Sato, K., S. Tanteno, S. Watanabe, and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, https://doi.org/10.1175/JAS-D-11-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer-Rolffs, U., 2017: A generalized formulation of the dynamic Smagorinsky model. Meteor. Z., 26, 181187, https://doi.org/10.1127/metz/2016/0801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer-Rolffs, U., and E. Becker, 2013: A two-dimensional version of the dynamic Smagorinsky model for atmospheric circulation models. Mon. Wea. Rev., 141, 887899, https://doi.org/10.1175/MWR-D-12-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer-Rolffs, U., R. Knöpfel, and E. Becker, 2015: A scale invariance criterion for LES parametrizations. Meteor. Z., 24, 313, https://doi.org/10.1127/metz/2014/0623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1993: Direct and large eddy simulation of turbulence—Summary of the state-of-the-art. Lecture Series: Introduction to the Modeling of Turbulence, W. Kollmann, Ed., Von Karman Institute, 199302.

  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siskind, D. E., 2014: Simulations of the winter stratopause and summer mesopause at varying spatial resolutions. J. Geophys. Res. Atmos., 119, 461470, https://doi.org/10.1002/2013JD020985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and St. A. Orszag, Eds., Cambridge University Press, 3–36, doi:10.1016/0955-5986(96)00002-s7.

    • Crossref
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, https://doi.org/10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, https://doi.org/10.1029/2006GL026429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Mieghem, J., 1973: Atmospheric Energetics. Clarendon Press, 306 pp.

  • Vreman, B., B. Geurts, and H. Kuerten, 1997: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech., 339, 357390, https://doi.org/10.1017/S0022112097005429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, https://doi.org/10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., K. Sato, and M. Takahashi, 2006: A general circulation model study of the orographic gravity waves over Antarctica excited by katabatic winds. J. Geophys. Res., 111, D18104, https://doi.org/10.1029/2005JD006851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zülicke, C., and E. Becker, 2013: The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. J. Geophys. Res. Atmos., 118, 22552271, https://doi.org/10.1002/jgrd.50219.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 2
PDF Downloads 21 21 2

Scale-Invariant Formulation of Momentum Diffusion for High-Resolution Atmospheric Circulation Models

View More View Less
  • 1 Leibniz-Institut für Atmosphärenphysik, Kühlungsborn, Germany
© Get Permissions
Restricted access

Abstract

A new version of the dynamic Smagorinsky model is presented that applies for nonisotropic momentum diffusion in high-resolution atmospheric circulation models. While the horizontal mixing length is computed in accordance with scale invariance in the mesoscale regime of the horizontal energy cascade, the associated dynamic vertical mixing length (DVML) is based on a recently developed scale invariance criterion and represents an application of the scaling laws of stratified macroturbulence. The DVML is validated in high-resolution simulations with the Kühlungsborn mechanistic general circulation model, using triangular spectral truncation at wavenumber 330 and a vertical level spacing of about 200 m in the upper troposphere. For a proper choice of the test filter, the model simulates a realistic horizontal kinetic energy spectrum in the troposphere along with a realistic intensity of the Lorenz energy cycle. This result is obtained without any hyperdiffusion, and it depends only little on whether the vertical mixing length is prescribed or set to the DVML. The globally averaged Smagorinsky parameter is about cS ≅ 0.53. The latitude–height cross sections show that cS maximizes in regions of strong mesoscale kinetic energy.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Urs Schaefer-Rolffs, schaefer-rolffs@iap-kborn.de

Abstract

A new version of the dynamic Smagorinsky model is presented that applies for nonisotropic momentum diffusion in high-resolution atmospheric circulation models. While the horizontal mixing length is computed in accordance with scale invariance in the mesoscale regime of the horizontal energy cascade, the associated dynamic vertical mixing length (DVML) is based on a recently developed scale invariance criterion and represents an application of the scaling laws of stratified macroturbulence. The DVML is validated in high-resolution simulations with the Kühlungsborn mechanistic general circulation model, using triangular spectral truncation at wavenumber 330 and a vertical level spacing of about 200 m in the upper troposphere. For a proper choice of the test filter, the model simulates a realistic horizontal kinetic energy spectrum in the troposphere along with a realistic intensity of the Lorenz energy cycle. This result is obtained without any hyperdiffusion, and it depends only little on whether the vertical mixing length is prescribed or set to the DVML. The globally averaged Smagorinsky parameter is about cS ≅ 0.53. The latitude–height cross sections show that cS maximizes in regions of strong mesoscale kinetic energy.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Urs Schaefer-Rolffs, schaefer-rolffs@iap-kborn.de
Save