• Barrett, B. S., J. F. Carrasco, and A. P. Testino, 2012: Madden–Julian oscillation (MJO) modulation of atmospheric circulation and Chilean winter precipitation. J. Climate, 25, 16781688, https://doi.org/10.1175/JCLI-D-11-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., G. R. Henderson, and J. S. Werling, 2015: The influence of MJO on the intraseasonal variability of Northern Hemisphere spring snow depth. J. Climate, 28, 72507262, https://doi.org/10.1175/JCLI-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and J. Nogues-Paegle, 1993: Intraseasonal fluctuations between the Tropics and extratropics in the Southern Hemisphere. J. Atmos. Sci., 50, 19501965, https://doi.org/10.1175/1520-0469(1993)050<1950:IIBTTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., B. J. Hoskins, and E. Tyrlis, 2007: Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci., 64, 28812898, https://doi.org/10.1175/JAS3984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1995: The linear and nonlinear extratropical response to tropical intraseasonal heating. J. Atmos. Sci., 52, 44484471, https://doi.org/10.1175/1520-0469(1995)052<4448:TLANER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H., 1992: Synoptic-Dynamic Meteorology in Midlatitudes: Principles of Kinematics and Dynamics. Oxford University Press, 448 pp.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1991: Mid-latitude Weather Systems. Harper Collins Academic, 507 pp.

  • Carvalho, L. M., C. Jones, and T. Ambrizzi, 2005: Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J. Climate, 18, 702718, https://doi.org/10.1175/JCLI-3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Damião Mendes, M. C. D., and I. F. A. Cavalcanti, 2014: The relationship between the Antarctic oscillation and blocking events over the South Pacific and Atlantic Oceans. Int. J. Climatol., 34, 529544, https://doi.org/10.1002/joc.3729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donald, A., H. Meinke, B. Power, A. H. N. de Maia, M. C. Wheeler, N. White, R. C. Stone, and J. Ribbe, 2006: Near-global impact of the Madden-Julian oscillation on rainfall. Geophys. Res. Lett., 33, L09704, https://doi.org/10.1029/2005GL025155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fauchereau, N. N., B. B. Pohl, and A. A. Lorrey, 2016: Extratropical impacts of the Madden–Julian Oscillation over New Zealand from a weather regime perspective. J. Climate, 29, 21612175, https://doi.org/10.1175/JCLI-D-15-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and K. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flatau, M., and Y.-J. Kim, 2013: Interaction between the MJO and polar circulations. J. Climate, 26, 35623574, https://doi.org/10.1175/JCLI-D-11-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and S.-W. Wang, 1998: Antarctic oscillation: Concept and applications. Chin. Sci. Bull., 43, 734738, https://doi.org/10.1007/BF02898949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and S.-W. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, https://doi.org/10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., B. S. Barrett, and D. M. LaFleur, 2014: Arctic sea ice and the Madden-Julian Oscillation (MJO). Climate Dyn., 43, 21852196, https://doi.org/10.1007/s00382-013-2043-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian Oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, M. Newman, J. D. Glick, and J. E. Schemm, 2000: Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon. Wea. Rev., 128, 6986, https://doi.org/10.1175/1520-0493(2000)128<0069:MRFEAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, https://doi.org/10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacques-Coper, M., S. Brönnimann, O. Martius, C. S. Vera, and S. B. Cerne, 2015: Evidence for a modulation of the intraseasonal summer temperature in eastern Patagonia by the Madden–Julian Oscillation. J. Geophys. Res. Atmos., 120, 73407357, https://doi.org/10.1002/2014JD022924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132, 14621471, https://doi.org/10.1175/1520-0493(2004)132<1462:TMOAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., A. Hazra, and L. M. V. Carvalho, 2015: The Madden–Julian oscillation and boreal winter forecast skill: An analysis of NCEP CFSv2 reforecasts. J. Climate, 28, 62976307, https://doi.org/10.1175/JCLI-D-15-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992a: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, https://doi.org/10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992b: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120, 19241938, https://doi.org/10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1997: Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Wea. Rev., 125, 19972013, https://doi.org/10.1175/1520-0493(1997)125<1997:HSASOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafleur, D. M., B. S. Barrett, and G. R. Henderson, 2015: Some climatological aspects of the Madden–Julian Oscillation (MJO). J. Climate, 28, 60396053, https://doi.org/10.1175/JCLI-D-14-00744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and R. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050, https://doi.org/10.1175/2007JCLI1955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., W. Guo, P. Hsu, and Y. Xue, 2016: Influence of the Madden–Julian oscillation on Tibetan Plateau snow cover at the intraseasonal time-scale. Sci. Rep., 6, 30456, https://doi.org/10.1038/srep30456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, https://doi.org/10.1029/1999GL010478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massom, R. A., M. J. Pook, J. C. Comiso, N. Adams, J. Turner, T. Lachlan-Cope, and T. Gibson, 2004: Precipitation over the interior East Antarctic Ice Sheet related to midlatitude blocking-high activity. J. Climate, 17, 19141928, https://doi.org/10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massom, R. A., and Coauthors, 2006: Extreme anomalous atmospheric circulation in the west Antarctic peninsula region in austral spring and summer 2001/02, and its profound impact on sea ice and biota. J. Climate, 19, 35443571, https://doi.org/10.1175/JCLI3805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and M. P. Meredith, 2004: Variability of Antarctic circumpolar transport and the Southern Annular Mode associated with the Madden-Julian Oscillation. Geophys. Res. Lett., 31, L24312, https://doi.org/10.1029/2004GL021666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998a: Tropical influences on California precipitation. J. Climate, 11, 412430, https://doi.org/10.1175/1520-0442(1998)011<0412:TIOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998b: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., O. Martius, and T. Spengler, 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612779, https://doi.org/10.1175/2010MWR3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paegle, J. N., L. A. Byerle, and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128, 837850, https://doi.org/10.1175/1520-0493(2000)128<0837:IMOSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, F. N., L. Carvalho, and T. Ambrizzi, 2014: A new climatology for Southern Hemisphere blockings in the winter and the combined effect of ENSO and SAM phases. Int. J. Climatol., 34, 16761692, https://doi.org/10.1002/joc.3795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pook, M. J., J. S. Risbey, P. C. McIntosh, C. C. Ummenhofer, A. G. Marshall, and G. A. Meyers, 2013: The seasonal cycle of blocking and associated physical mechanisms in the Australian region and relationship with rainfall. Mon. Wea. Rev., 141, 45344553, https://doi.org/10.1175/MWR-D-13-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., and M. J. Revell, 1999: Blocking over the South Pacific and Rossby wave propagation. Mon. Wea. Rev., 127, 22332247, https://doi.org/10.1175/1520-0493(1999)127<2233:BOTSPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012: Tropical-extratropical interactions. Intraseasonal Variability of the Atmosphere–Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Springer, 497512.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., C. J. Schreck III, and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137, 469478, https://doi.org/10.1175/2008MWR2595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. M. Cordeira, and D. Margolin, 2013: Which MJO events affect North American temperatures? Mon. Wea. Rev., 141, 38403850, https://doi.org/10.1175/MWR-D-13-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., H. Lee, and D. W. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 35573571, https://doi.org/10.1175/JAS-D-16-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X. J., P. X. Wang, and J. X. L. Wang, 2017: An assessment of the atmospheric centers of action in the northern hemisphere winter. Climate Dyn., 48, 10311047, https://doi.org/10.1007/s00382-016-3126-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and K. C. Mo, 1985: Blocking in the Southern Hemisphere. Mon. Wea. Rev., 113, 321, https://doi.org/10.1175/1520-0493(1985)113<0003:BITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and N. A. Bond, 2004: The Madden-Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, https://doi.org/10.1029/2003GL018645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 27042722, https://doi.org/10.1175/MWR-D-10-05028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck III, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 41974210, https://doi.org/10.1175/MWR-D-12-00327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., and E. Berry, 2007: A synoptic–dynamic model of subseasonal atmospheric variability. Mon. Wea. Rev., 135, 449474, https://doi.org/10.1175/MWR3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 14451461, https://doi.org/10.1175/1520-0469(1997)054<1445:TDOIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., and A. J. Miller, 2005: The interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J. Climate, 18, 143159, https://doi.org/10.1175/JCLI3251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., Y. Lu, B. Yang, J. Jiang, A. Huang, Y. Zhao, M. La, and Q. Yang, 2016: On the relationship between the Madden-Julian Oscillation and 2 m air temperature over central Asia in boreal winter. J. Geophys. Res. Atmos., 121, 13,25013,272, https://doi.org/10.1002/2016JD025651.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 8
PDF Downloads 9 9 4

Time-Lagged Response of the Antarctic and High-Latitude Atmosphere to Tropical MJO Convection

View More View Less
  • 1 Oceanography Department, U.S. Naval Academy, Annapolis, Maryland
© Get Permissions
Restricted access

ABSTRACT

Intraseasonal tropical variability has important implications for the mid- and high-latitude atmosphere, and in recent studies has been shown to modulate a number of weather processes in the Northern Hemisphere, such as snow depth, sea ice concentration, precipitation, atmospheric rivers, and air temperature. In such studies, the extratropical atmosphere has tended to respond to the tropical convection of the leading mode of intraseasonal variability, the Madden–Julian oscillation (MJO), with a time lag of approximately 7 days. However, the time lag between the MJO and the Antarctic atmosphere has been found to vary between less than 7 and greater than 20 days. This study builds on previous work by further examining the time-lagged response of Southern Hemisphere tropospheric circulation to tropical MJO forcing, with specific focus on the latitude belt associated with the Antarctic Oscillation, during the months of June (austral winter) and December (austral summer) using NCEP–DOE Reanalysis 2 data for the years 1979–2016. Principal findings indicate that the time lag with the strongest height anomalies depends on both the location of the MJO convection (e.g., the MJO phase) and the season, and that the lagged height anomalies in the Antarctic atmosphere are fairly consistent across different vertical levels and latitudinal bands. In addition, certain MJO phases in December displayed lagged height anomalies indicative of blocking-type atmospheric patterns, with an approximate wavenumber of 4, whereas in June most phases were associated with more progressive height anomaly centers resembling a wavenumber-3-type pattern.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Gina R. Henderson, ghenders@usna.edu

ABSTRACT

Intraseasonal tropical variability has important implications for the mid- and high-latitude atmosphere, and in recent studies has been shown to modulate a number of weather processes in the Northern Hemisphere, such as snow depth, sea ice concentration, precipitation, atmospheric rivers, and air temperature. In such studies, the extratropical atmosphere has tended to respond to the tropical convection of the leading mode of intraseasonal variability, the Madden–Julian oscillation (MJO), with a time lag of approximately 7 days. However, the time lag between the MJO and the Antarctic atmosphere has been found to vary between less than 7 and greater than 20 days. This study builds on previous work by further examining the time-lagged response of Southern Hemisphere tropospheric circulation to tropical MJO forcing, with specific focus on the latitude belt associated with the Antarctic Oscillation, during the months of June (austral winter) and December (austral summer) using NCEP–DOE Reanalysis 2 data for the years 1979–2016. Principal findings indicate that the time lag with the strongest height anomalies depends on both the location of the MJO convection (e.g., the MJO phase) and the season, and that the lagged height anomalies in the Antarctic atmosphere are fairly consistent across different vertical levels and latitudinal bands. In addition, certain MJO phases in December displayed lagged height anomalies indicative of blocking-type atmospheric patterns, with an approximate wavenumber of 4, whereas in June most phases were associated with more progressive height anomaly centers resembling a wavenumber-3-type pattern.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Gina R. Henderson, ghenders@usna.edu
Save