• Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, https://doi.org/10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966, https://doi.org/10.1175/MWR-D-12-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1982: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds. Springer-Verlag, 175–189.

    • Crossref
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A, 273277, https://doi.org/10.3402/tellusa.v56i4.14424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishida, J., 2007: Development of a hybrid terrain-following vertical coordinate for JMA non-hydrostatic model. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 37, 03090310, https://www.wcrp-climate.org/WGNE/BlueBook/2007/individual-articles/03_Ishida_Junichi_wgne_zhybrid.pdf.

    • Search Google Scholar
    • Export Citation
  • Japan Meteorological Agency, 2012: Tornadoes generated on 6 May 2012 (in Japanese). Meteorological Research Institute, Tokyo District Meteorological Observatory, and Sendai District Meteorological Observatory, 14 pp., http://www.jma.go.jp/jma/press/1206/08b/toppu120608.html.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng., 82, 3545, https://doi.org/10.1115/1.3662552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.

    • Crossref
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, https://doi.org/10.1175/JAS-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795823, https://doi.org/10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, E. Rasmussen, J. Straka, R. Davies-Jones, and R. J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535, https://doi.org/10.1175/2008MWR2315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, https://doi.org/10.1175/MWR-D-11-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., 2016a: A numerical study of the 6 May 2012 Tsukuba City supercell tornado. Part I: Vorticity sources of low-level and midlevel mesocyclones. Mon. Wea. Rev., 144, 10691092, https://doi.org/10.1175/MWR-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., 2016b: A numerical study of the 6 May 2012 Tsukuba City supercell tornado. Part II: Mechanisms of tornadogenesis. Mon. Wea. Rev., 144, 30773098, https://doi.org/10.1175/MWR-D-15-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260, https://doi.org/10.1175/2009MWR2959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud —The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68, 107128, https://doi.org/10.2151/jmsj1965.68.2_107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada Level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada Level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A. T., and H. Niino, 2005: Genesis and structure of a major tornado in a numerically-simulated supercell storm: Importance of vertical vorticity in a gust front. SOLA, 1, 58, https://doi.org/10.2151/sola.2005-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A. T., and H. Niino, 2010: A numerical investigation of a supercell tornado: Genesis and vorticity budget. J. Meteor. Soc. Japan, 88, 135159, https://doi.org/10.2151/jmsj.2010-203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. M. L. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 27952816, https://doi.org/10.1175/MWR-D-14-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., and M. Xue, 2017: The role of surface drag in mesocyclone intensification leading to tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 74, 30553077, https://doi.org/10.1175/JAS-D-16-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, https://doi.org/10.1175/JAS-D-15-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci., 69, 33723390, https://doi.org/10.1175/JAS-D-12-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130154, https://doi.org/10.1175/JAS-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seko, H., T. Tsuyuki, K. Saito, and T. Miyoshi, 2013: Development of a two-way nested LETKF system for cloud-resolving model. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. Park and L. Xu, Eds., Vol. II, Springer, 489–507, https://doi.org/10.1007/978-3-642-35088-7_20.

    • Crossref
    • Export Citation
  • Seko, H., M. Kunii, S. Yokota, T. Tsuyuki, and T. Miyoshi, 2015: Ensemble experiments using a nested LETKF system to reproduce intense vortices associated with tornadoes of 6 May 2012 in Japan. Prog. Earth Planet. Sci., 2, 42, https://doi.org/10.1186/s40645-015-0072-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices in the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/32.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, https://doi.org/10.1175/WAF864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamauchi, H., H. Niino, O. Suzuki, Y. Shoji, E. Sato, A. Adachi, and W. Mashiko, 2013: Vertical structure of the Tsukuba F3 tornado on 6 May 2012 as revealed by a polarimetric radar. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 320, https://ams.confex.com/ams/36Radar/webprogram/Paper228827.html.

  • Yokota, S., H. Seko, M. Kunii, H. Yamauchi, and H. Niino, 2016: The tornadic supercell on the Kanto Plain on 6 May 2012: Polarimetric radar and surface data assimilation with EnKF and ensemble-based sensitivity analysis. Mon. Wea. Rev., 144, 31333157, https://doi.org/10.1175/MWR-D-15-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 11 11 11

Important Factors for Tornadogenesis as Revealed by High-Resolution Ensemble Forecasts of the Tsukuba Supercell Tornado of 6 May 2012 in Japan

View More View Less
  • 1 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
  • | 2 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
  • | 3 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 4 Numerical Prediction Division, Forecast Department, Japan Meteorological Agency, Tokyo, and Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
  • | 5 Administration Division, Observation Department, Japan Meteorological Agency, Tokyo, and Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
Restricted access

Abstract

To identify important factors for supercell tornadogenesis, 33-member ensemble forecasts of the supercell tornado that struck the city of Tsukuba, Japan, on 6 May 2012 were conducted using a mesoscale numerical model with a 50-m horizontal grid. Based on the ensemble forecasts, the sources of the rotation of simulated tornadoes and the relationship between tornadogenesis and mesoscale environmental processes near the tornado were analyzed. Circulation analyses of near-surface, tornadolike vortices simulated in several ensemble members showed that the rotation of the tornadoes could be frictionally generated near the surface. However, the mechanisms responsible for generating circulation were only weakly related to the strength of the tornadoes. To identify the mesoscale processes required for tornadogenesis, mesoscale atmospheric conditions and their correlations with the strength of tornadoes were examined. The results showed that two near-tornado mesoscale factors were important for tornadogenesis: strong low-level mesocyclones (LMCs) at about 1 km above ground level and humid air near the surface. Strong LMCs and large water vapor near the surface strengthened the nonlinear dynamic vertical perturbation pressure gradient force and buoyancy, respectively. These upward forces made contributions essential for tornadogenesis via tilting and stretching of vorticity near the surface.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sho Yokota, syokota@mri-jma.go.jp

Abstract

To identify important factors for supercell tornadogenesis, 33-member ensemble forecasts of the supercell tornado that struck the city of Tsukuba, Japan, on 6 May 2012 were conducted using a mesoscale numerical model with a 50-m horizontal grid. Based on the ensemble forecasts, the sources of the rotation of simulated tornadoes and the relationship between tornadogenesis and mesoscale environmental processes near the tornado were analyzed. Circulation analyses of near-surface, tornadolike vortices simulated in several ensemble members showed that the rotation of the tornadoes could be frictionally generated near the surface. However, the mechanisms responsible for generating circulation were only weakly related to the strength of the tornadoes. To identify the mesoscale processes required for tornadogenesis, mesoscale atmospheric conditions and their correlations with the strength of tornadoes were examined. The results showed that two near-tornado mesoscale factors were important for tornadogenesis: strong low-level mesocyclones (LMCs) at about 1 km above ground level and humid air near the surface. Strong LMCs and large water vapor near the surface strengthened the nonlinear dynamic vertical perturbation pressure gradient force and buoyancy, respectively. These upward forces made contributions essential for tornadogenesis via tilting and stretching of vorticity near the surface.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sho Yokota, syokota@mri-jma.go.jp
Save