• Berenguer, M., and I. Zawadzki, 2008: A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Wea. Forecasting, 23, 10851101, https://doi.org/10.1175/2008WAF2222134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1965: On the low-level redistribution of atmospheric water caused by orography. Proc. Int. Conf. on Cloud Physics, Tokyo, Japan, Amer. Meteor. Soc., 96–100.

  • Bianchi, B., P. J. van Leeuwen, R. J. Hogan, and A. Berne, 2013: A variational approach to retrieve rain rate by combining information from rain gauges, radars, and microwave links. J. Hydrometeor., 14, 18971909, https://doi.org/10.1175/JHM-D-12-094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and P. C. Banacos, 2002: The vertical profile of wind and temperature in cyclones and anticyclones over the eastern two-thirds of the United States: A climatology. Mon. Wea. Rev., 130, 477506, https://doi.org/10.1175/1520-0493(2002)130<0477:TVPOWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, D. J., D. J. Kirshbaum, and S. L. Gray, 2012: Under what conditions does embedded convection enhance orographic precipitation? Quart. J. Roy. Meteor. Soc., 138, 391406, https://doi.org/10.1002/qj.926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., T. H. Painter, W. R. Currier, J. D. Lundquist, and D. P. Lettenmaier, 2018: Estimation of precipitation over the OLYMPEX domain during winter 2015/16. J. Hydrometeor., 19, 143160, https://doi.org/10.1175/JHM-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chumchean, S., A. Sharma, and A. Seed, 2006: An integrated approach to error correction for real-time radar-rainfall estimation. J. Atmos. Oceanic Technol., 23, 6779, https://doi.org/10.1175/JTECH1832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 2000: The 5–9 February 1996 flooding event over the Pacific Northwest: Sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Wea. Rev., 128, 593617, https://doi.org/10.1175/1520-0493(2000)128<0593:TFFEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., C. F. Mass, and K. J. Westrick, 2000a: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15, 730744, https://doi.org/10.1175/1520-0434(2000)015<0730:MPVOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cookson-Hills, P., D. J. Kirshbaum, M. Surcel, J. G. Doyle, L. Fillion, D. Jacques, and S.-J. Baek, 2017: Verification of 24-h quantitative precipitation forecasts over the Pacific Northwest from a high-resolution ensemble Kalman filter system. Wea. Forecasting, 32, 11851208, https://doi.org/10.1175/WAF-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, https://doi.org/10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor., 14, 783804, https://doi.org/10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, https://doi.org/10.1175/JAS3555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316, https://doi.org/10.1034/j.1600-0870.2003.00025.x.

  • Kingsmill, D. E., P. J. Neiman, F. M. Ralph, and A. B. White, 2006: Synoptic and topographic variability of Northern California precipitation characteristics in landfalling winter storms observed during CALJET. Mon. Wea. Rev., 134, 20722094, https://doi.org/10.1175/MWR3166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2017: On upstream blocking over heated mountain ridges. Quart. J. Roy. Meteor. Soc., 143, 5368, https://doi.org/10.1002/qj.2945.

  • Kirshbaum, D. J., and R. B. Smith, 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 11831199, https://doi.org/10.1002/qj.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and A. L. M. Grant, 2012: Invigoration of cumulus cloud fields by mesoscale ascent. Quart. J. Roy. Meteor. Soc., 138, 21362150, https://doi.org/10.1002/qj.1954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langston, C., and J. Zhang, 2004: An automated algorithm for radar beam occultation. 11th Conf. on Aviation, Range, and Aerospace, and 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P5.16, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81932.htm.

  • Lewis, H. W., and D. L. Harrison, 2007: Assessment of radar data quality in upland catchments. Meteor. Appl., 14, 441454, https://doi.org/10.1002/met.43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Mass, C., 1981: Topographically forced convergence in western Washington State. Mon. Wea. Rev., 109, 13351347, https://doi.org/10.1175/1520-0493(1981)109<1335:TFCIWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., N. Johnson, M. Warner, and R. Vargas, 2015: Synoptic control of cross-barrier precipitation ratios for the Cascade Mountains. J. Hydrometeor., 16, 10141028, https://doi.org/10.1175/JHM-D-14-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., Y. L. Kogan, and D. M. Schultz, 2010: Large-eddy observation of post-cold-frontal continental stratocumulus. J. Atmos. Sci., 67, 33683383, https://doi.org/10.1175/2010JAS3389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., E. Sukovich, and R. A. Houze, 2007: Vertical structure of precipitation in cyclones crossing the Oregon Cascades. Mon. Wea. Rev., 135, 35653586, https://doi.org/10.1175/MWR3470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, G. H. Roe, and A. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, https://doi.org/10.1002/qj.258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, and G. H. Roe, 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, https://doi.org/10.1175/JAS-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picard, L., and C. Mass, 2017: The sensitivity of orographic precipitation to flow direction: An idealized modeling approach. J. Hydrometeor., 18, 16731688, https://doi.org/10.1175/JHM-D-16-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, https://doi.org/10.1175/2007JAS2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richard, E., N. Chaumerliac, J. F. Mahfouf, and E. C. Nickerson, 1987: Numerical simulation of orographic enhancement of rain with a mesoscale model. J. Climate Appl. Meteor., 26, 661669, https://doi.org/10.1175/1520-0450(1987)026<0661:NSOOEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., B. Dolan, W. F. Krajewski, S. A. Rutledge, and W. Petersen, 2015: Comparison of single- and dual-polarization–based rainfall estimates using NEXRAD data for the NASA Iowa Flood Studies Project. J. Hydrometeor., 16, 16581675, https://doi.org/10.1175/JHM-D-14-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siler, N., and D. Durran, 2016: What causes weak orographic rain shadows? Insights from case studies in the Cascades and idealized simulations. J. Atmos. Sci., 73, 40774099, https://doi.org/10.1175/JAS-D-15-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and W. F. Krajewski, 1993: A modeling study of rainfall rate-reflectivity relationships. Water Resour. Res., 29, 25052514, https://doi.org/10.1029/93WR00962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic flow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, https://doi.org/10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18, 10181036, https://doi.org/10.1175/1520-0434(2003)018<1018:OHIIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., I. Zawadzki, and M. Yau, 2014: On the filtering properties of ensemble averaging for storm-scale precipitation forecasts. Mon. Wea. Rev., 142, 10931105, https://doi.org/10.1175/MWR-D-13-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westrick, K., C. Mass, and B. Colle, 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 22892298, https://doi.org/10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, https://doi.org/10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 16
PDF Downloads 63 63 23

Synoptic Control over Orographic Precipitation Distributions during the Olympics Mountains Experiment (OLYMPEX)

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec, Canada
© Get Permissions
Restricted access

Abstract

The synoptic controls on orographic precipitation during the Olympics Mountains Experiment (OLYMPEX) are investigated using observations and numerical simulations. Observational precipitation retrievals for six warm-frontal (WF), six warm-sector (WS), and six postfrontal (PF) periods indicate that heavy precipitation occurred in both WF and WS periods, but the latter saw larger orographic enhancements. Such enhancements extended well upstream of the terrain in WF periods but were focused over the windward slopes in both PF and WS periods. Quasi-idealized simulations, constrained by OLYMPEX data, reproduce the key synoptic sensitivities of the OLYMPEX precipitation distributions and thus facilitate physical interpretation. These sensitivities are largely explained by three upstream parameters: the large-scale precipitation rate , the impinging horizontal moisture flux I, and the low-level static stability. Both WF and WS events exhibit large and I, and thus, heavy orographic precipitation, which is greatly enhanced in amplitude and areal extent by the seeder–feeder process. However, the stronger stability of the WF periods, particularly within the frontal inversion (even when it lies above crest level), causes their precipitation enhancement to weaken and shift upstream. In contrast, the small and I, larger static stability, and absence of stratiform feeder clouds in the nominally unsaturated and convective PF events yield much lighter time- and area-averaged precipitation. Modest enhancements still occur over the windward slopes due to the local development and invigoration of shallow convective showers.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Kirshbaum, daniel.kirshbaum@mcgill.ca

Abstract

The synoptic controls on orographic precipitation during the Olympics Mountains Experiment (OLYMPEX) are investigated using observations and numerical simulations. Observational precipitation retrievals for six warm-frontal (WF), six warm-sector (WS), and six postfrontal (PF) periods indicate that heavy precipitation occurred in both WF and WS periods, but the latter saw larger orographic enhancements. Such enhancements extended well upstream of the terrain in WF periods but were focused over the windward slopes in both PF and WS periods. Quasi-idealized simulations, constrained by OLYMPEX data, reproduce the key synoptic sensitivities of the OLYMPEX precipitation distributions and thus facilitate physical interpretation. These sensitivities are largely explained by three upstream parameters: the large-scale precipitation rate , the impinging horizontal moisture flux I, and the low-level static stability. Both WF and WS events exhibit large and I, and thus, heavy orographic precipitation, which is greatly enhanced in amplitude and areal extent by the seeder–feeder process. However, the stronger stability of the WF periods, particularly within the frontal inversion (even when it lies above crest level), causes their precipitation enhancement to weaken and shift upstream. In contrast, the small and I, larger static stability, and absence of stratiform feeder clouds in the nominally unsaturated and convective PF events yield much lighter time- and area-averaged precipitation. Modest enhancements still occur over the windward slopes due to the local development and invigoration of shallow convective showers.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Kirshbaum, daniel.kirshbaum@mcgill.ca
Save