Abstract
The synoptic controls on orographic precipitation during the Olympics Mountains Experiment (OLYMPEX) are investigated using observations and numerical simulations. Observational precipitation retrievals for six warm-frontal (WF), six warm-sector (WS), and six postfrontal (PF) periods indicate that heavy precipitation occurred in both WF and WS periods, but the latter saw larger orographic enhancements. Such enhancements extended well upstream of the terrain in WF periods but were focused over the windward slopes in both PF and WS periods. Quasi-idealized simulations, constrained by OLYMPEX data, reproduce the key synoptic sensitivities of the OLYMPEX precipitation distributions and thus facilitate physical interpretation. These sensitivities are largely explained by three upstream parameters: the large-scale precipitation rate
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).