• Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and B. W. Golding, 1995: Mesoscale aspects of a dry intrusion within a vigorous cyclone. Quart. J. Roy. Meteor. Soc., 121, 463493, https://doi.org/10.1002/qj.49712152302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., J. Dudhia, and C. Snyder, 2011: A multilayer upper-boundary condition for longwave radiative flux to correct temperature biases in a mesoscale model. Mon. Wea. Rev., 139, 19521959, https://doi.org/10.1175/2010MWR3513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colman, B. R., 1990: Thunderstorms above frontal surfaces in environments without positive CAPE. Part I: A climatology. Mon. Wea. Rev., 118, 11031122, https://doi.org/10.1175/1520-0493(1990)118<1103:TAFSIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curran, J. T., and A. D. Pearson, 1971: Proximity soundings for thunderstorms with snow. Preprints, Seventh Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 118–119.

  • Fuhrmann, C. M., and C. E. Konrad II, 2013: A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Wea. Forecasting, 28, 647667, https://doi.org/10.1175/WAF-D-12-00079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M., A. J. Thorpe, and K. A. Browning, 2000: Convective destabilization by a tropopause fold diagnosed using potential-vorticity inversion. Quart. J. Roy. Meteor. Soc., 126, 125144, https://doi.org/10.1002/qj.49712656207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and M. Han, 2007: High- resolution observations of the trowal–warm-frontal region of two continental winter cyclones. Mon. Wea. Rev., 135, 16291646, https://doi.org/10.1175/MWR3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halcomb, C. E., and P. S. Market, 2003: Forcing, instability and equivalent potential vorticity in a Midwest USA convective snowstorm. Meteor. Appl., 10, 273280, https://doi.org/10.1017/S1350482703003074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, M., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and J. A. Grim, 2007: Mesoscale dynamics of the trowal and warm-frontal regions of two continental winter cyclones. Mon. Wea. Rev., 135, 16471670, https://doi.org/10.1175/MWR3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., and J. V. Cortinas Jr., 1998: Thunderstorms observed at surface temperatures near and below freezing across North America. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 705–708.

  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., R. M. Rauber, B. F. Jewett, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Market, P. S., C. E. Halcomb, and R. L. Ebert, 2002: A climatology of thundersnow events over the contiguous United States. Wea. Forecasting, 17, 12901295, https://doi.org/10.1175/1520-0434(2002)017<1290:ACOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Market, P. S., and Coauthors, 2006: Proximity soundings of thundersnow in the central United States. J. Geophys. Res., 111, D19208, https://doi.org/10.1029/2006JD007061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998: The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event. Mon. Wea. Rev., 126, 329348, https://doi.org/10.1175/1520-0493(1998)126<0329:TSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. T., C. E. Graves, S. Ng, and J. L. Smith, 2005: A process-oriented methodology toward understanding the organization of an extensive mesoscale snowband: A diagnostic case study of 4–5 December 1999. Wea. Forecasting, 20, 3550, https://doi.org/10.1175/WAF-829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. M., R. M. Rauber, G. M. McFarquhar, J. A. Finlon, D. M. Plummer, A. A. Rosenow, and B. F. Jewett, 2017: A microphysical analysis of elevated convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 74, 6991, https://doi.org/10.1175/JAS-D-16-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, https://doi.org/10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, https://doi.org/10.1175/2007MWR2233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, https://doi.org/10.1175/2009MWR2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, https://doi.org/10.1175/2010MWR3219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim data set (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, https://doi.org/10.1175/JCLI-D-13-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, https://doi.org/10.1175/JAS-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, https://doi.org/10.1175/JAS-D-14-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasp, S., T. Selz, and G. C. Craig, 2016: Convective and slantwise trajectory ascent in convection-permitting simulations of midlatitude cyclones. Mon. Wea. Rev., 144, 39613976, https://doi.org/10.1175/MWR-D-16-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2014: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, https://doi.org/10.1175/JAS-D-13-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2015: The role of cloud-top generating cells and boundary layer circulations in the finescale radar structure of a winter cyclone over the Great Lakes. Mon. Wea. Rev., 143, 22912318, https://doi.org/10.1175/MWR-D-14-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J. Meteor., 12, 226237, https://doi.org/10.1175/1520-0469(1955)012<0226:ASOACT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338349, https://doi.org/10.1175/1520-0469(1953)010<0338:AIOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenow, A. R., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and C. F. Mass, 1993: The occlusion process in a midlatitude cyclone over land. Mon. Wea. Rev., 121, 918940, https://doi.org/10.1175/1520-0493(1993)121<0918:TOPIAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, https://doi.org/10.1175/2008MWR2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, and C. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, https://doi.org/10.1175/2011JAS3648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stoelinga, M. T., 2009: A users’ guide to RIP version 4.5: A program for visualizing mesoscale model output. University of Washington, accessed 28 September 2017, http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. A., T. J. Lang, and W. A. Lyons, 2014: Synoptic scale outbreak of self-initiated upward lightning (SIUL) from tall structures during the central U.S. blizzard of 1–2 February 2011. J. Geophys. Res. Atmos., 119, 95309548, https://doi.org/10.1002/2014JD021691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, B. H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., and D. Atlas, 1959: Precipitation generating cells. J. Meteor., 16, 327332, https://doi.org/10.1175/1520-0469(1959)016<0327:PGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiesmueller, J. L., and S. M. Zubrick, 1998: Evaluation and application of conditional symmetric instability, equivalent potential vorticity, and frontogenetic forcing in an operational forecast environment. Wea. Forecasting, 13, 84101, https://doi.org/10.1175/1520-0434(1998)013<0084:EAAOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 15
PDF Downloads 47 47 8

Elevated Potential Instability in the Comma Head: Distribution and Development

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
  • 2 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
© Get Permissions
Restricted access

Abstract

The development of elevated potential instability within the comma head of a continental winter cyclone over the north-central United States is examined using a 63-h Weather Research and Forecasting (WRF) Model simulation. The simulation is first compared to the observed cyclone. The distribution of most unstable convective available potential energy (MUCAPE) within the comma head is then analyzed. The region with positive MUCAPE was based from 2- to 4-km altitude with MUCAPE values up to 93 J kg−1. Backward trajectories from five sublayers within the region of elevated convection in the comma head were calculated to investigate how elevated potential instability developed. Air in the lowest sublayer, the source air for convective cells, originated 63 h earlier near Baja California at elevations between 2.25- and 2.75-km altitude. Air atop the layer where convection occurred originated at altitudes between 9.25 and 9.75 km in the Arctic, 5000 km away from the origin of air in the lowest sublayer. All air in the layer in which convection occurred originated over the Pacific coast of Mexico, the Pacific Ocean, or arctic regions of Canada. Diabatic processes strongly influenced air properties during transit to the comma head. Air underwent radiative cooling, was affected by mixing during passage over mountains, and underwent interactions with clouds and precipitation. Notably, no trajectory followed an isentropic surface during the transit. The changes in thermodynamic properties along the trajectories led to an arrangement of air masses in the comma head that promoted the development of potential instability and elevated convection.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Current affiliation: Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew A. Rosenow, andrew.rosenow@noaa.gov

Abstract

The development of elevated potential instability within the comma head of a continental winter cyclone over the north-central United States is examined using a 63-h Weather Research and Forecasting (WRF) Model simulation. The simulation is first compared to the observed cyclone. The distribution of most unstable convective available potential energy (MUCAPE) within the comma head is then analyzed. The region with positive MUCAPE was based from 2- to 4-km altitude with MUCAPE values up to 93 J kg−1. Backward trajectories from five sublayers within the region of elevated convection in the comma head were calculated to investigate how elevated potential instability developed. Air in the lowest sublayer, the source air for convective cells, originated 63 h earlier near Baja California at elevations between 2.25- and 2.75-km altitude. Air atop the layer where convection occurred originated at altitudes between 9.25 and 9.75 km in the Arctic, 5000 km away from the origin of air in the lowest sublayer. All air in the layer in which convection occurred originated over the Pacific coast of Mexico, the Pacific Ocean, or arctic regions of Canada. Diabatic processes strongly influenced air properties during transit to the comma head. Air underwent radiative cooling, was affected by mixing during passage over mountains, and underwent interactions with clouds and precipitation. Notably, no trajectory followed an isentropic surface during the transit. The changes in thermodynamic properties along the trajectories led to an arrangement of air masses in the comma head that promoted the development of potential instability and elevated convection.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Current affiliation: Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew A. Rosenow, andrew.rosenow@noaa.gov
Save