• Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended‐range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., M. C. Pitts, L. R. Poole, Y. J. Orsolini, K. Nishii, and H. Nakamura, 2012: The 2009–2010 Arctic stratospheric winter—General evolution, mountain waves and predictability of an operational weather forecast model. Atmos. Chem. Phys., 12, 36593675, https://doi.org/10.5194/acp-12-3659-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2010: Stratosphere‐troposphere coupling and annular mode variability in chemistry‐climate models. J. Geophys. Res., 115, D00M06, https://doi.org/10.1029/2009JD013770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., A. Goto, H. Hasegawa, N. Fujikawa, H. Naoe, and T. Hirooka, 2010: A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67, 20522069, https://doi.org/10.1175/2009JAS3320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and M. Leutbecher, 2007: Performance of the ECMWF forecasting system in the Arctic during winter. Quart. J. Roy. Meteor. Soc., 133, 13271340, https://doi.org/10.1002/qj.99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karpetchko, A., E. Kyro, and B. M. Knudsen, 2005: Arctic and Antarctic polar vortices 1957–2002 as seen from the ERA-40 reanalyses. J. Geophys. Res., 110, D21109, https://doi.org/10.1029/2005JD006113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Yu., P. Hitchcock, D. H. W. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quart. J. Roy. Meteor. Soc., 143, 14591470, https://doi.org/10.1002/qj.3017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and M. Flatau, 2010: Hindcasting the January 2009 Arctic sudden stratospheric warming and its influence on the Arctic Oscillation with unified parameterization of orographic drag in NOGAPS. Part I: Extended-range stand-alone forecast. Wea. Forecasting, 25, 16281644, https://doi.org/10.1175/2010WAF2222421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, https://doi.org/10.1002/qj.620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehtonen, I., and A. Yu. Karpechko, 2016: Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. J. Geophys. Res. Atmos., 121, 15911610, https://doi.org/10.1002/2015JD023860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2010: Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res., 115, D16114, https://doi.org/10.1029/2009JD012643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 17641776, https://doi.org/10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, https://doi.org/10.1038/ngeo1698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2014: Stratospheric predictability: Basic characteristics in JMA 1-month hindcast experiments for 1979–2009. J. Atmos. Sci., 71, 35213538, https://doi.org/10.1175/JAS-D-13-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2016a: Connection of predictability of major stratospheric sudden warmings to polar vortex geometry. Atmos. Sci. Lett., 17, 3338, https://doi.org/10.1002/asl.595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2016b: Predictability of major stratospheric sudden warmings: Analysis results from JMA operational 1-month ensemble predictions from 2001/02 to 2012/13. J. Atmos. Sci., 73, 789806, https://doi.org/10.1175/JAS-D-15-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015a: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett., 10, 104007, https://doi.org/10.1088/1748-9326/10/10/104007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2015b: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, https://doi.org/10.1002/qj.2432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2016: Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Mon. Wea. Rev., 144, 19351960, https://doi.org/10.1175/MWR-D-15-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Waugh, D. W., J. M. Sisson, and D. J. Karoly, 1998: Predictive skill of an NWP system in the southern lower stratosphere. Quart. J. Roy. Meteor. Soc., 124, 21812200, https://doi.org/10.1002/qj.49712455102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 11
PDF Downloads 70 70 21

Predictability of Sudden Stratospheric Warmings in the ECMWF Extended-Range Forecast System

View More View Less
  • 1 Finnish Meteorological Institute, Helsinki, Finland
© Get Permissions
Restricted access

Abstract

The skill of the Arctic stratospheric retrospective ensemble forecasts (hindcasts) of the European Centre for Medium-Range Weather Forecasts extended-range system is analyzed with a focus on the predictability of the major sudden stratospheric warmings (SSWs) during the period 1993–2016. Thirteen SSWs took place during this period. It is found that forecasts initialized 10–15 days before the SSWs show worse skill in the stratosphere than forecasts initialized during normal conditions in terms of root-mean-square errors but not in terms of anomaly correlation. Using the spread of ensemble members to estimate forecasted SSW probability, it is shown that some SSWs can be predicted with high (>0.9) probability at lead times of 12–13 days if a difference of 3 days between actual and forecasted SSW is allowed. Focusing on SSWs with significant impacts on the tropospheric circulation, on average, the forecasted SSW probability is found to increase from nearly 0 at 1-month lead time to 0.3 at day 13 before SSW, and then rapidly increases to nearly 1 at day 7. The period between days 8 and 12 is when most of the SSWs are predicted, with a probability of 0.5–0.9, which is considerably larger than the observed SSW occurrence frequency. Therefore, this period can be thought of as an estimate of the SSW predictability limit in this system. Indications that the predictability limit for some SSWs may be longer than 2 weeks are also found; however, this result is inconclusive and more studies are needed to understand when and why such long predictability is possible.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Yu. Karpechko, alexey.karpechko@fmi.fi

Abstract

The skill of the Arctic stratospheric retrospective ensemble forecasts (hindcasts) of the European Centre for Medium-Range Weather Forecasts extended-range system is analyzed with a focus on the predictability of the major sudden stratospheric warmings (SSWs) during the period 1993–2016. Thirteen SSWs took place during this period. It is found that forecasts initialized 10–15 days before the SSWs show worse skill in the stratosphere than forecasts initialized during normal conditions in terms of root-mean-square errors but not in terms of anomaly correlation. Using the spread of ensemble members to estimate forecasted SSW probability, it is shown that some SSWs can be predicted with high (>0.9) probability at lead times of 12–13 days if a difference of 3 days between actual and forecasted SSW is allowed. Focusing on SSWs with significant impacts on the tropospheric circulation, on average, the forecasted SSW probability is found to increase from nearly 0 at 1-month lead time to 0.3 at day 13 before SSW, and then rapidly increases to nearly 1 at day 7. The period between days 8 and 12 is when most of the SSWs are predicted, with a probability of 0.5–0.9, which is considerably larger than the observed SSW occurrence frequency. Therefore, this period can be thought of as an estimate of the SSW predictability limit in this system. Indications that the predictability limit for some SSWs may be longer than 2 weeks are also found; however, this result is inconclusive and more studies are needed to understand when and why such long predictability is possible.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Yu. Karpechko, alexey.karpechko@fmi.fi
Save