• Abdelnur Ruggiero, G., E. Cosme, J.-M. Brankart, J. L. Sommer, and C. Ubelmann, 2016: An efficient way to account for observation error correlations in the assimilation of data from the future SWOT high-resolution altimeter mission. J. Atmos. Oceanic Technol., 33, 27552768, https://doi.org/10.1175/JTECH-D-16-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., R. Buizza, C. Cardinali, and J. N. Thépaut, 2011: Impact of singular-vector-based satellite date thinning on NWP. Quart. J. Roy. Meteor. Soc., 137, 286302, https://doi.org/10.1002/qj.733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, D., P. Brasseur, J. Brankart, Y. Ourmières, and J. Verron, 2010: Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: Implications for nonlinear estimation using Gaussian anamorphosis. Ocean Sci., 6, 247262, https://doi.org/10.5194/os-6-247-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., 1989: An isentropic mesoα-scale analysis system and its sensitivity to aircraft and surface observations. Mon. Wea. Rev., 117, 15861603, https://doi.org/10.1175/1520-0493(1989)117<1586:AIMSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergman, K. H., and W. D. Bonner, 1976: Analysis error as a function of observation density for satellite temperature soundings with spatially correlated errors. Mon. Wea. Rev., 104, 13081316, https://doi.org/10.1175/1520-0493(1976)104<1308:AEAAFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker, 2017: Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system. Mon. Wea. Rev., 145, 10191032, https://doi.org/10.1175/MWR-D-16-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dando, M. L., A. J. Thorpe, and J. R. Eyre, 2007: The optimal density of atmospheric sounder observations in the Met Office NWP system. Quart. J. Roy. Meteor. Soc., 133, 19331943, https://doi.org/10.1002/qj.175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, https://doi.org/10.1256/qj.05.137.

  • Dee, D. P., and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269295, https://doi.org/10.1002/qj.49712454512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotta, D., E. Kalnay, Y. Ota, and T. Miyoshi, 2017: EFSR: Ensemble forecast sensitivity to observation error covariance. Mon. Wea. Rev., 145, 50155031, https://doi.org/10.1175/MWR-D-17-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 364 pp.

    • Crossref
    • Export Citation
  • Lazarus, S. M., M. E. Splitt, M. D. Lueken, R. Ramachandran, X. Li, S. Movva, S. J. Graves, and B. T. Zavodsky, 2010: Evaluation of data reduction algorithms for real-time analysis. Wea. Forecasting, 25, 837851, https://doi.org/10.1175/2010WAF2222296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., E. Kalnay, T. Miyoshi, and C. M. Danforth, 2009: Accounting for model errors in ensemble data assimilation. Mon. Wea. Rev., 137, 34073419, https://doi.org/10.1175/2009MWR2766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., J. Zhu, Y. Xiao, and R. Wang, 2010: A model-based observation-thinning scheme for the assimilation of high-resolution SST in the shelf and coastal seas around China. J. Atmos. Oceanic Technol., 27, 10441058, https://doi.org/10.1175/2010JTECHO709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z.-Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 13671386, https://doi.org/10.1256/003590002320373337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z.-Q., and F. Rabier, 2003: The potential of high-density observations for numerical weather prediction: A study with simulated observations. Quart. J. Roy. Meteor. Soc., 129, 30133035, https://doi.org/10.1256/qj.02.170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and M. Kunii, 2012: Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction. Tellus, 64A, 18408, https://doi.org/10.3402/tellusa.v64i0.18408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakabayashi, A., and G. Ueno, 2017: An extension of the ensemble Kalman filter for estimating the observation error covariance matrix based on the variational Bayes method. Mon. Wea. Rev., 145, 199213, https://doi.org/10.1175/MWR-D-16-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochotta, T., C. Gebhardt, D. Saupe, and W. Wergen, 2005: Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. Quart. J. Roy. Meteor. Soc., 131, 34273437, https://doi.org/10.1256/qj.05.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., D. F. Parrish, and M. Masutani, 2000: Meteorological observational data compression: An alternative to conventional “super-obbing.” NCEP Office Note 430, 12 pp., http://www.emc.ncep.noaa.gov/mmb/papers/purser/on430.pdf.

  • Ramachandran, R., X. Li, S. Movva, S. Graves, S. Greco, D. Emmitt, J. Terry, and R. Atlas, 2005: Intelligent data thinning algorithm for earth system numerical model research and application. 21st Int. Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., 13.8, https://ams.confex.com/ams/Annual2005/techprogram/paper_85987.htm.

  • Richman, M. B., L. M. Leslie, T. B. Trafalis, and H. Mansour, 2015: Data selection using support vector regression. Adv. Atmos. Sci., 32, 277286, https://doi.org/10.1007/s00376-014-4072-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todling, R., 2015a: A lag-1 smoother approach to system-error estimation: Sequential method. Quart. J. Roy. Meteor. Soc., 141, 15021513, https://doi.org/10.1002/qj.2460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todling, R., 2015b: A complementary note to ‘A lag-1 smoother approach to system-error estimation’: The intrinsic limitations of residual diagnostics. Quart. J. Roy. Meteor. Soc., 141, 29172922, https://doi.org/10.1002/qj.2546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard, 2016: Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics. Mon. Wea. Rev., 144, 35333551, https://doi.org/10.1175/MWR-D-15-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2011: Measuring information content from observations for data assimilation: Spectral formulations and their implications to observational data compression. Tellus, 63A, 793804, https://doi.org/10.1111/j.1600-0870.2011.00524.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., and L. Wei, 2011: Measuring information content from observations for data assimilations: Utilities of spectral formulations demonstrated with radar observations. Tellus, 63A, 10141027, https://doi.org/10.1111/j.1600-0870.2011.00542.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., and S. Boukabara, 2015: Development and test of the community satellite data thinning and representation optimization tool. 13th JCSDA Technical Review Meeting and Science Workshop on Satellite Data Assimilation, College Park, MD, Joint Center for Satellite Data Assimilation, https://www.jcsda.noaa.gov/meetings_Wkshp2015_posters.php.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 5
PDF Downloads 35 35 3

The Effect of Thinning and Superobservations in a Simple One-Dimensional Data Analysis with Mischaracterized Error

View More View Less
  • 1 NOAA/Atlantic Oceanographic and Meteorological Laboratory, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, and Atmospheric and Environmental Research, Lexington, Massachusetts
© Get Permissions
Restricted access

ABSTRACT

A one-dimensional (1D) analysis problem is defined and analyzed to explore the interaction of observation thinning or superobservation with observation errors that are correlated or systematic. The general formulation might be applied to a 1D analysis of radiance or radio occultation observations in order to develop a strategy for the use of such data in a full data assimilation system, but is applied here to a simple analysis problem with parameterized error covariances. Findings for the simple problem include the following. For a variational analysis method that includes an estimate of the full observation error covariances, the analysis is more sensitive to variations in the estimated background and observation error standard deviations than to variations in the corresponding correlation length scales. Furthermore, if everything else is fixed, the analysis error increases with decreasing true background error correlation length scale and with increasing true observation error correlation length scale. For a weighted least squares analysis method that assumes the observation errors are uncorrelated, best results are obtained for some degree of thinning and/or tuning of the weights. Without tuning, the best strategy is superobservation with a spacing approximately equal to the observation error correlation length scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ross N. Hoffman, ross.n.hoffman@noaa.gov

ABSTRACT

A one-dimensional (1D) analysis problem is defined and analyzed to explore the interaction of observation thinning or superobservation with observation errors that are correlated or systematic. The general formulation might be applied to a 1D analysis of radiance or radio occultation observations in order to develop a strategy for the use of such data in a full data assimilation system, but is applied here to a simple analysis problem with parameterized error covariances. Findings for the simple problem include the following. For a variational analysis method that includes an estimate of the full observation error covariances, the analysis is more sensitive to variations in the estimated background and observation error standard deviations than to variations in the corresponding correlation length scales. Furthermore, if everything else is fixed, the analysis error increases with decreasing true background error correlation length scale and with increasing true observation error correlation length scale. For a weighted least squares analysis method that assumes the observation errors are uncorrelated, best results are obtained for some degree of thinning and/or tuning of the weights. Without tuning, the best strategy is superobservation with a spacing approximately equal to the observation error correlation length scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ross N. Hoffman, ross.n.hoffman@noaa.gov
Save