• Abhik, S., M. Halder, P. Mukhopadhyay, X. Jiang, and B. N. Goswami, 2013: A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Climate Dyn., 40, 16111624, https://doi.org/10.1007/s00382-012-1425-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007a: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, https://doi.org/10.1111/j.1600-0870.2006.00216.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007b: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99111, https://doi.org/10.1016/j.physd.2006.02.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, https://doi.org/10.1175/MWR-D-11-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and D. S. Oliver, 2010: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci., 14, 579601, https://doi.org/10.1007/s10596-009-9174-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De La Chevrotière, M., 2015: Stochastic and numerical models for tropical convection and Hadley-monsoon dynamics. Ph.D. thesis, University of Victoria, 233 pp.

  • De La Chevrotière, M., and J. Harlim, 2017: A data-driven method for improving the correlation estimation in serial ensemble Kalman filters. Mon. Wea. Rev., 145, 9851001, https://doi.org/10.1175/MWR-D-16-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De La Chevrotière, M., and B. Khouider, 2017: A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing. Theor. Comput. Fluid Dyn., 31, 89110, https://doi.org/10.1007/s00162-016-0407-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De La Chevrotière, M., B. Khouider, and A. J. Majda, 2016: Stochasticity of convection in Giga-LES data. Climate Dyn., 47, 18451861, https://doi.org/10.1007/s00382-015-2936-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demmel, J. W., 1997: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, xi + 416 pp., https://doi.org/10.1137/1.9781611971446.

    • Crossref
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal., 98, 227255, https://doi.org/10.1016/j.jmva.2006.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harlim, J., 2017: Model error in data assimilation. Nonlinear and Stochastic Climate Dynamics, C. L. E. Franzke and T. J. O’Kane, Eds., Cambridge University Press, 276–317, https://doi.org/10.1017/9781316339251.011.

    • Crossref
    • Export Citation
  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 1, Springer Series in Statistics, Springer, 745 pp., https://doi.org/10.1007/978-0-387-84858-7.

    • Crossref
    • Export Citation
  • Hotelling, H., 1953: New light on the correlation coefficient and its transforms. J. Roy. Stat. Soc., 15B (2), 193232.

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, T., D. McLaughlin, S. E. Cohn, and M. Verlaan, 2014: Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms. Mon. Wea. Rev., 142, 755773, https://doi.org/10.1175/MWR-D-13-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, https://doi.org/10.1115/1.3662552.

  • Katsoulakis, M. A., A. J. Majda, and D. G. Vlachos, 2003: Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems. J. Comput. Phys., 186, 250278, https://doi.org/10.1016/S0021-9991(03)00051-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006a: Model multi-cloud parameterizations for convectively coupled waves: Detailed nonlinear wave evolution. Dyn. Atmos. Oceans, 42, 5980, https://doi.org/10.1016/j.dynatmoce.2005.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006b: Multicloud convective parametrizations with crude vertical structure. Theor. Comput. Fluid Dyn., 20, 351375, https://doi.org/10.1007/s00162-006-0013-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006c: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, https://doi.org/10.1175/JAS3677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381400, https://doi.org/10.1175/JAS3833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. Majda, 2008: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 895914, https://doi.org/10.1175/2007JAS2408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., A. Majda, and M. Katsoulakis, 2003: Coarse-grained stochastic models for tropical convection and climate. Proc. Natl. Acad. Sci. USA, 100, 11 94111 946, https://doi.org/10.1073/pnas.1634951100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216, https://doi.org/10.4310/CMS.2010.v8.n1.a10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, https://doi.org/10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar on Predictability, Vol. 1, Shinfield Park, Reading, United Kingdom, 18 pp., https://www.ecmwf.int/sites/default/files/elibrary/1995/10829-predictability-problem-partly-solved.pdf.

  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., K. Kondo, and T. Imamura, 2014: The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 52645271, https://doi.org/10.1002/2014GL060863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., P. Sakov, and S. P. Corney, 2007: Impacts of localisation in the EnKF and EnOI: Experiments with a small model. Ocean Dyn., 57, 3245, https://doi.org/10.1007/s10236-006-0088-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strang, G., 1968: On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5, 506517, https://doi.org/10.1137/0705041.

  • Tardif, R., G. J. Hakim, and C. Snyder, 2014: Coupled atmosphere–ocean data assimilation experiments with a low-order climate model. Climate Dyn., 43, 16311643, https://doi.org/10.1007/s00382-013-1989-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2009: Boundary layer dynamics in a simple model for convectively coupled gravity waves. J. Atmos. Sci., 66, 27802795, https://doi.org/10.1175/2009JAS2871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waller, J. A., S. L. Dance, A. S. Lawless, and N. K. Nichols, 2014: Estimating correlated observation error statistics using an ensemble transform Kalman filter. Tellus, 66A, 23294, https://doi.org/10.3402/tellusa.v66.23294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 3
PDF Downloads 6 6 3

Data-Driven Localization Mappings in Filtering the Monsoon–Hadley Multicloud Convective Flows

View More View Less
  • 1 Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania
  • 2 Department of Mathematics, and Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

This paper demonstrates the efficacy of data-driven localization mappings for assimilating satellite-like observations in a dynamical system of intermediate complexity. In particular, a sparse network of synthetic brightness temperature measurements is simulated using an idealized radiative transfer model and assimilated to the monsoon–Hadley multicloud model, a nonlinear stochastic model containing several thousands of model coordinates. A serial ensemble Kalman filter is implemented in which the empirical correlation statistics are improved using localization maps obtained from a supervised learning algorithm. The impact of the localization mappings is assessed in perfect-model observing system simulation experiments (OSSEs) as well as in the presence of model errors resulting from the misspecification of key convective closure parameters. In perfect-model OSSEs, the localization mappings that use adjacent correlations to improve the correlation estimated from small ensemble sizes produce robust accurate analysis estimates. In the presence of model error, the filter skills of the localization maps trained on perfect- and imperfect-model data are comparable.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Harlim, jharlim@psu.edu

Abstract

This paper demonstrates the efficacy of data-driven localization mappings for assimilating satellite-like observations in a dynamical system of intermediate complexity. In particular, a sparse network of synthetic brightness temperature measurements is simulated using an idealized radiative transfer model and assimilated to the monsoon–Hadley multicloud model, a nonlinear stochastic model containing several thousands of model coordinates. A serial ensemble Kalman filter is implemented in which the empirical correlation statistics are improved using localization maps obtained from a supervised learning algorithm. The impact of the localization mappings is assessed in perfect-model observing system simulation experiments (OSSEs) as well as in the presence of model errors resulting from the misspecification of key convective closure parameters. In perfect-model OSSEs, the localization mappings that use adjacent correlations to improve the correlation estimated from small ensemble sizes produce robust accurate analysis estimates. In the presence of model error, the filter skills of the localization maps trained on perfect- and imperfect-model data are comparable.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Harlim, jharlim@psu.edu
Save