Ensemble Sensitivity Analysis for Targeted Observations of Supercell Thunderstorms

George L. Limpert Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by George L. Limpert in
Current site
Google Scholar
PubMed
Close
and
Adam L. Houston Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Adam L. Houston in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

Ensemble sensitivity analysis (ESA) has been demonstrated for observation targeting of synoptic-scale and mesoscale phenomena, but could have similar applications for storm-scale observations with mobile platforms. This paper demonstrates storm-scale ESA using an idealized supercell simulated with a 101-member CM1 ensemble. Correlation coefficients are used as a measure of sensitivity and are derived from single-variable and multivariable linear regressions of pressure, temperature, humidity, and wind with forecast response variables intended as proxies for the strength of supercells. This approach is suitable for targeting observing platforms that simultaneously measure multiple base-state variables. Although the individual correlations are found to be noisy and difficult to interpret, averaging across small areas of the domain and over the duration of the simulation is found to simplify the analysis. However, it is difficult to identify physically meaningful results from the sensitivity calculations, and evaluation of the results suggests that the overall skill would be low in targeting observations at the storm scale solely based on these sensitivity calculations. The difficulty in applying ESA at the scale of an individual supercell is likely due to applying the linear model to an environment with highly nonlinear dynamics, rapidly changing forecast metrics, and autocorrelation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: George Limpert, george.limpert@unl.edu

ABSTRACT

Ensemble sensitivity analysis (ESA) has been demonstrated for observation targeting of synoptic-scale and mesoscale phenomena, but could have similar applications for storm-scale observations with mobile platforms. This paper demonstrates storm-scale ESA using an idealized supercell simulated with a 101-member CM1 ensemble. Correlation coefficients are used as a measure of sensitivity and are derived from single-variable and multivariable linear regressions of pressure, temperature, humidity, and wind with forecast response variables intended as proxies for the strength of supercells. This approach is suitable for targeting observing platforms that simultaneously measure multiple base-state variables. Although the individual correlations are found to be noisy and difficult to interpret, averaging across small areas of the domain and over the duration of the simulation is found to simplify the analysis. However, it is difficult to identify physically meaningful results from the sensitivity calculations, and evaluation of the results suggests that the overall skill would be low in targeting observations at the storm scale solely based on these sensitivity calculations. The difficulty in applying ESA at the scale of an individual supercell is likely due to applying the linear model to an environment with highly nonlinear dynamics, rapidly changing forecast metrics, and autocorrelation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: George Limpert, george.limpert@unl.edu
Save
  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 16131628, https://doi.org/10.1175//2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, https://doi.org/10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bednarczyk, C. N., and B. C. Ancell, 2015: Ensemble sensitivity analysis applied to a southern plains convective event. Mon. Wea. Rev., 143, 230249, https://doi.org/10.1175/MWR-D-13-00321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and A. Montani, 1999: Targeting observations using singular vectors. J. Atmos. Sci., 56, 29652985, https://doi.org/10.1175/1520-0469(1999)056<2965:TOUSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., M. Zheng, and K. Raeder, 2013: Medium-range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Mon. Wea. Rev., 141, 211231, https://doi.org/10.1175/MWR-D-11-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, R., and D. Stensrud, 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 19932011, https://doi.org/10.1175/JAS-D-12-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., and T. Vukicevic, 1992: Sensitivity analysis using an adjoint of the PSU–NCAR mesoscale model. Mon. Wea. Rev., 120, 16441660, https://doi.org/10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcies, L., and V. Homar, 2010: An optimized ensemble sensitivity climatology of Mediterranean intense cyclones. Nat. Hazards Earth Syst. Sci., 10, 24412450, https://doi.org/10.5194/nhess-10-2441-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J., and L. Lei, 2015: Multivariate ensemble sensitivity with localization. Mon. Wea. Rev., 143, 20132027, https://doi.org/10.1175/MWR-D-14-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. C. G., 1986: Application of adjoint sensitivity theory to an atmospheric general circulation model. J. Atmos. Sci., 43, 26442652, https://doi.org/10.1175/1520-0469(1986)043<2644:AOASTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. C. G., and D. G. Cacuci, 1983: Physical interpretations of adjoint functions for sensitivity analysis of atmospheric models. J. Atmos. Sci., 40, 25372546, https://doi.org/10.1175/1520-0469(1983)040<2537:PIOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. C. G., D. G. Cacuci, and M. E. Schlesinger, 1982: Sensitivity analysis of a radiative-convective model by the adjoint method. J. Atmos. Sci., 39, 20382050, https://doi.org/10.1175/1520-0469(1982)039<2038:SAOARC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and B. C. Ancell, 2016: Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation. Mon. Wea. Rev., 144, 41614182, https://doi.org/10.1175/MWR-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irvine, E. A., S. L. Gray, J. Methven, and I. A. Renfrew, 2011: Forecast impact of targeted observations: Sensitivity to observation error and proximity to steep orography. Mon. Wea. Rev., 139, 6978, https://doi.org/10.1175/2010MWR3459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R., 1999: Workshop on targeted observations for extratropical and tropical forecasting. Bull. Amer. Meteor. Soc., 80, 23312338, https://doi.org/10.1175/1520-0477(1999)080<2331:WOTOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., J. Du, D. Zhang, C. Cui, and Y. Liao, 2014: Ensemble-based analysis and sensitivity of mesoscale forecasts of a vortex over southwest China. Quart. J. Roy. Meteor. Soc., 140, 766782, https://doi.org/10.1002/qj.2200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414, https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., K. A. Emanuel, and C. Snyder, 2001: Idealized adaptive observation strategies for improving numerical weather prediction. J. Atmos. Sci., 58, 210232, https://doi.org/10.1175/1520-0469(2001)058<0210:IAOSFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2014: Vorticity evolution leading to tornadogenesis and tornadogenesis failure in simulated supercells. J. Atmos. Sci., 71, 12011217, https://doi.org/10.1175/JAS-D-13-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and P. M. Markowski, 2016: Modifications to the near-storm environment induced by simulated supercell thunderstorms. Mon. Wea. Rev., 144, 273293, https://doi.org/10.1175/MWR-D-15-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., K. L. Elmore, and S. J. Weiss, 2010: Assessing the impacts of proximity sounding criteria on the climatology of significant tornado environments. Wea. Forecasting, 25, 921930, https://doi.org/10.1175/2010WAF2222368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, https://doi.org/10.1175/MWR-D-15-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, A. V. Zimin, S. J. Majumdar, and A. Persson, 2002: Propagation of the effect of targeted observations: The 2000 winter storm reconnaissance program. Mon. Wea. Rev., 130, 11441165, https://doi.org/10.1175/1520-0493(2002)130<1144:POTEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25, 6178, https://doi.org/10.1175/2009WAF2222255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, https://doi.org/10.1175/2009MWR2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., D. C. Dowell, J. L. Schroeder, P. S. Skinner, A. E. Reinhart, P. M. Markowski, and Y. P. Richardson, 2015: A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts. Mon. Wea. Rev., 143, 27362753, https://doi.org/10.1175/MWR-D-14-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weissmann, M., R. Busen, A. Dörnbrack, S. Rahm, and O. Reitebuch, 2005: Targeted observations with an airborne wind lidar. J. Atmos. Oceanic Technol., 22, 17061719, https://doi.org/10.1175/JTECH1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wile, S. M., J. P. Hacker, and K. H. Chilcoat, 2015: The potential utility of high-resolution ensemble sensitivity analysis for observation placement during weak flow in complex terrain. Wea. Forecasting, 30, 15211536, https://doi.org/10.1175/WAF-D-14-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 26112626, https://doi.org/10.1175/JAS3974.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, B., F. Zhang, Q. Zhang, J. Poterjoy, and Y. Weng, 2013: Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and data assimilation. Mon. Wea. Rev., 141, 14371453, https://doi.org/10.1175/MWR-D-12-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokota, S., H. Seko, M. Kunii, H. Yamauchi, and H. Niino, 2016: The tornadic supercell on the Kanto Plain on 6 May 2012: Polarimetric radar and surface data assimilation with EnKF and ensemble-based sensitivity analysis. Mon. Wea. Rev., 144, 31333157, https://doi.org/10.1175/MWR-D-15-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, M., E. K. M. Chang, and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, https://doi.org/10.1175/WAF-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 836 353 30
PDF Downloads 347 79 3