Mountain-Wave Propagation under Transient Tropospheric Forcing: A DEEPWAVE Case Study

Tanja C. Portele Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Tanja C. Portele in
Current site
Google Scholar
PubMed
Close
,
Andreas Dörnbrack Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Andreas Dörnbrack in
Current site
Google Scholar
PubMed
Close
,
Johannes S. Wagner Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Johannes S. Wagner in
Current site
Google Scholar
PubMed
Close
,
Sonja Gisinger Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Sonja Gisinger in
Current site
Google Scholar
PubMed
Close
,
Benedikt Ehard Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Benedikt Ehard in
Current site
Google Scholar
PubMed
Close
,
Pierre-Dominique Pautet Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Pierre-Dominique Pautet in
Current site
Google Scholar
PubMed
Close
, and
Markus Rapp Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Markus Rapp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of transient tropospheric forcing on the deep vertical mountain-wave propagation is investigated by a unique combination of in situ and remote sensing observations and numerical modeling. The temporal evolution of the upstream low-level wind follows approximately a shape and was controlled by a migrating trough and connected fronts. Our case study reveals the importance of the time-varying propagation conditions in the upper troposphere and lower stratosphere (UTLS). Upper-tropospheric stability, the wind profile, and the tropopause strength affected the observed and simulated wave response in the UTLS. Leg-integrated along-track momentum fluxes ( ) and amplitudes of vertical displacements of air parcels in the UTLS reached up to 130 kN m−1 and 1500 m, respectively. Their maxima were phase shifted to the maximum low-level forcing by ≈8 h. Small-scale waves ( km) were continuously forced, and their flux values depended on wave attenuation by breaking and reflection in the UTLS region. Only maximum flow over the envelope of the mountain range favored the excitation of longer waves that propagated deeply into the mesosphere. Their long propagation time caused a retarded enhancement of observed mesospheric gravity wave activity about 12–15 h after their observation in the UTLS. For the UTLS, we further compared observed and simulated with fluxes of 2D quasi-steady runs. UTLS momentum fluxes seem to be reproducible by individual quasi-steady 2D runs, except for the flux enhancement during the early decelerating forcing phase.

Current affiliation: Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tanja C. Portele, tanja.portele@dlr.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Abstract

The impact of transient tropospheric forcing on the deep vertical mountain-wave propagation is investigated by a unique combination of in situ and remote sensing observations and numerical modeling. The temporal evolution of the upstream low-level wind follows approximately a shape and was controlled by a migrating trough and connected fronts. Our case study reveals the importance of the time-varying propagation conditions in the upper troposphere and lower stratosphere (UTLS). Upper-tropospheric stability, the wind profile, and the tropopause strength affected the observed and simulated wave response in the UTLS. Leg-integrated along-track momentum fluxes ( ) and amplitudes of vertical displacements of air parcels in the UTLS reached up to 130 kN m−1 and 1500 m, respectively. Their maxima were phase shifted to the maximum low-level forcing by ≈8 h. Small-scale waves ( km) were continuously forced, and their flux values depended on wave attenuation by breaking and reflection in the UTLS region. Only maximum flow over the envelope of the mountain range favored the excitation of longer waves that propagated deeply into the mesosphere. Their long propagation time caused a retarded enhancement of observed mesospheric gravity wave activity about 12–15 h after their observation in the UTLS. For the UTLS, we further compared observed and simulated with fluxes of 2D quasi-steady runs. UTLS momentum fluxes seem to be reproducible by individual quasi-steady 2D runs, except for the flux enhancement during the early decelerating forcing phase.

Current affiliation: Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tanja C. Portele, tanja.portele@dlr.de

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Save
  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, https://doi.org/10.1029/2002GL015142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, K., and Coauthors, 2015: Momentum flux estimates accompanying multiscale gravity waves over Mount Cook, New Zealand, on 13 July 2014 during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 120, 93239337, https://doi.org/10.1002/2015JD023197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bramberger, M., and Coauthors, 2017: Does strong tropospheric forcing cause large-amplitude mesospheric gravity waves? A DEEPWAVE case study. J. Geophys. Res. Atmos., 122, 11 42211 443, https://doi.org/10.1002/2017JD027371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., D. R. Durran, and G. J. Hakim, 2005: Mountain-wave momentum flux in an evolving synoptic-scale flow. J. Atmos. Sci., 62, 32133231, https://doi.org/10.1175/JAS3543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., G. J. Hakim, and D. R. Durran, 2007: Transient mountain waves and their interaction with large scales. J. Atmos. Sci., 64, 23782400, https://doi.org/10.1175/JAS3972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., M. Leutbecher, R. Kivi, and E. Kyrö, 1999: Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia. Tellus, 51A, 951963, https://doi.org/10.3402/tellusa.v51i5.14504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., Q. Jiang, R. B. Smith, and V. Grubišić, 2011: Three-dimensional characteristics of stratospheric mountain waves during T-REX. Mon. Wea. Rev., 139, 323, https://doi.org/10.1175/2010MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2016: Dynamics of orographic gravity waves observed in the mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). J. Atmos. Sci., 73, 38553876, https://doi.org/10.1175/JAS-D-16-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehard, B., B. Kaifler, N. Kaifler, and M. Rapp, 2015: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements. Atmos. Meas. Tech., 8, 46454655, https://doi.org/10.5194/amtd-8-9045-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehard, B., P. Achtert, A. Dörnbrack, S. Gisinger, J. Gumbel, M. Khaplanov, M. Rapp, and J. Wagner, 2016: Combination of lidar and model data for studying deep gravity wave propagation. Mon. Wea. Rev., 144, 7798, https://doi.org/10.1175/MWR-D-14-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, https://doi.org/10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giez, A., C. Mallaun, M. Zöger, A. Dörnbrack, and U. Schumann, 2017: Static pressure from aircraft trailing-cone measurements and numerical weather-prediction analysis. J. Aircr., 54, 17281737, https://doi.org/10.2514/1.C034084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean. 1st ed. Academic Press, 662 pp.

  • Gisinger, S., and Coauthors, 2017: Atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Mon. Wea. Rev., 145, 4249–4275, https://doi.org/10.1175/MWR-D-16-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and Coauthors, 2008: The terrain-induced rotor experiment: A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 15131534, https://doi.org/10.1175/2008BAMS2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hills, M. O. G., and D. R. Durran, 2012: Nonstationary trapped lee waves generated by the passage of an isolated jet. J. Atmos. Sci., 69, 30403059, https://doi.org/10.1175/JAS-D-12-047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. Numerical Techniques for Global Atmospheric Models, P. Lauritzen et al., Eds., Lecture Notes in Computational Science and Engineering Series, Vol. 80, Springer, 381–493.

    • Crossref
    • Export Citation
  • Kaifler, B., N. Kaifler, B. Ehard, A. Dörnbrack, M. Rapp, and D. C. Fritts, 2015: Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophys. Res. Lett., 42, 94889494, https://doi.org/10.1002/2015GL066465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, T. L., 1994: Implications of the hydrostatic assumption on atmospheric gravity waves. J. Atmos. Sci., 51, 19151929, https://doi.org/10.1175/1520-0469(1994)051<1915:IOTHAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., and R. B. Smith, 2015: Gravity wave diagnostics and characteristics in mesoscale fields. J. Atmos. Sci., 72, 43724392, https://doi.org/10.1175/JAS-D-15-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., R. B. Smith, and S. D. Eckermann, 2016: The midlatitude lower-stratospheric mountain wave “valve layer.” J. Atmos. Sci., 73, 50815100, https://doi.org/10.1175/JAS-D-16-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., A. Dörnbrack, and M. Weissmann, 2013: High-resolution Doppler lidar observations of transient downslope flows and rotors. Mon. Wea. Rev., 141, 32573272, https://doi.org/10.1175/MWR-D-12-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, B. R. Morton, and T. L. Clark, 2000: Observations and numerical modelling of mountain waves over the Southern Alps of New Zealand. Quart. J. Roy. Meteor. Soc., 126, 27652788, https://doi.org/10.1002/qj.49712656909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., X. San Liang, and R. H. Weisberg, 2007: Rectification of the bias in the wavelet power spectrum. J. Atmos. Oceanic Technol., 24, 20932102, https://doi.org/10.1175/2007JTECHO511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and H. Teitelbaum, 1993a: Linear unsteady mountain waves. Tellus, 45A, 201220, https://doi.org/10.3402/tellusa.v45i3.14871.

  • Lott, F., and H. Teitelbaum, 1993b: Topographic waves generated by a transient wind. J. Atmos. Sci., 50, 26072624, https://doi.org/10.1175/1520-0469(1993)050<2607:TWGBAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., and F. Lott, 2007: Synoptic responses to mountain gravity waves encountering directional critical levels. J. Atmos. Sci., 64, 828848, https://doi.org/10.1175/JAS3873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2017: Mountain waves, downslope winds, and low-level blocking forced by a midlatitude cyclone encountering an isolated ridge. J. Atmos. Sci., 74, 617639, https://doi.org/10.1175/JAS-D-16-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., M. J. Taylor, W. R. Pendleton Jr, Y. Zhao, T. Yuan, R. Esplin, and D. McLain, 2014: Advanced mesospheric temperature mapper for high-latitude airglow studies. Appl. Opt., 53, 59345943, https://doi.org/10.1364/AO.53.005934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., and Coauthors, 2016: Large-amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7°S) during the DEEPWAVE project. J. Geophys. Res. Atmos., 121, 14311441, https://doi.org/10.1002/2015JD024336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical results. Bull. Amer. Meteor. Soc., 29, 1626.

  • Reeder, M. J., N. Adams, and T. P. Lane, 1999: Radiosonde observations of partially trapped lee waves over Tasmania, Australia. J. Geophys. Res., 104, 16 71916 727, https://doi.org/10.1029/1999JD900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, S. M., Ed., 2009: Introduction to Probability and Statistics for Engineers and Scientists. 4th ed. Academic Press, 664 pp.

    • Crossref
    • Export Citation
  • Rotering, H., 2011: Falcon 20-E5 trailing cone validation. German Aerospace Center, Institute of Flight Systems Rep. IB 111-2011/28, 46 pp.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. B., 1979: The influence of the mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87230, https://doi.org/10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and C. G. Kruse, 2017: Broad-spectrum mountain waves. J. Atmos. Sci., 74, 13811402, https://doi.org/10.1175/JAS-D-16-0297.1.

  • Smith, R. B., J. D. Doyle, Q. Jiang, and S. A. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc., 133, 917936, https://doi.org/10.1002/qj.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., B. K. Woods, J. Jensen, W. A. Cooper, J. D. Doyle, Q. Jiang, and V. Grubišić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65, 25432562, https://doi.org/10.1175/2007JAS2598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2016: Stratospheric gravity wave fluxes and scales during DEEPWAVE. J. Atmos. Sci., 73, 28512869, https://doi.org/10.1175/JAS-D-15-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S., J. Baumgardner, and M. Mendillo, 2009: Evidence of mesospheric gravity-waves generated by orographic forcing in the troposphere. Geophys. Res. Lett., 36, L08807, https://doi.org/10.1029/2008GL036936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snively, J. B., V. P. Pasko, and M. J. Taylor, 2010: OH and OI airglow layer modulation by ducted short‐period gravity waves: Effects of trapping altitude. J. Geophys. Res., 115, A11311, https://doi.org/10.1029/2009JA015236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, L., S. Serafin, and V. Grubišić, 2016: Atmospheric rotors and severe turbulence in a long deep valley. J. Atmos. Sci., 73, 14811506, https://doi.org/10.1175/JAS-D-15-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., 2014: The physics of orographic gravity wave drag. Front. Phys., 2, 43, https://doi.org/10.3389/fphy.2014.00043.

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J., and Coauthors, 2017: Observed versus simulated mountain waves over Scandinavia—Improvement of vertical winds, energy and momentum fluxes by enhanced model resolution? Atmos. Chem. Phys., 17, 40314052, https://doi.org/10.5194/acp-17-4031-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, L., 1962: The OH nightglow emission. J. Atmos. Sci., 19, 116, https://doi.org/10.1175/1520-0469(1962)019<0001:TONE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, B. K., and R. B. Smith, 2010: Energy flux and wavelet diagnostics of secondary mountain waves. J. Atmos. Sci., 67, 37213738, https://doi.org/10.1175/2009JAS3285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, B. K., and R. B. Smith, 2011: Short-wave signatures of stratospheric mountain wave breaking. J. Atmos. Sci., 68, 635656, https://doi.org/10.1175/2010JAS3634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3971 1564 535
PDF Downloads 240 63 4