Explicit Convection and Scale-Aware Cumulus Parameterizations: High-Resolution Simulations over Areas of Different Topography in Germany

Andreas Wagner Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Andreas Wagner in
Current site
Google Scholar
PubMed
Close
,
Dominikus Heinzeller Institute of Meteorology and Climate Research IMK-IFU, Karlsruhe Institute of Technology (KIT-Campus Alpin), Garmisch-Partenkirchen, Germany

Search for other papers by Dominikus Heinzeller in
Current site
Google Scholar
PubMed
Close
,
Sven Wagner Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Sven Wagner in
Current site
Google Scholar
PubMed
Close
,
Thomas Rummler Institute of Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Thomas Rummler in
Current site
Google Scholar
PubMed
Close
, and
Harald Kunstmann Institute of Meteorology and Climate Research IMK-IFU, Karlsruhe Institute of Technology (KIT-Campus Alpin), Garmisch-Partenkirchen, and University of Augsburg, Institute of Geography, Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An increase in the spatial resolution of regional climate model simulations improves the representation of land surface characteristics and may allow the explicit calculation of important physical processes such as convection. The present study investigates further potential benefits with respect to precipitation, based on a small ensemble of high-resolution simulations with WRF with grid spacings up to 1 km. The skill of each experiment is evaluated regarding the temporal and spatial performance of the simulation of precipitation of one year over both a mountainous region in southwestern Germany and a mainly flat region in northern Germany. This study allows us to differentiate between the impact of grid spacing, topography, and convection parameterization. Furthermore, the performance of a state-of-the-art convection parameterization scheme in the gray zone of convection is evaluated against an explicit calculation of convection only. Our evaluation demonstrates the following: high-resolution simulations (5 and 1 km) are generally able to represent the diurnal cycle, structure, and intensity distribution of precipitation, when compared to observational datasets such as radar data and interpolated station data. The influence of the improved representation of the topography at higher resolution (1 km) becomes apparent in complex terrain, where the localization of precipitation maxima is more accurate, although these maxima are overestimated. In flat areas, differences in spatial evaluations arise between simulations with parameterized and explicitly calculated convection, whereas smaller grid spacings (1 km vs 5 km) show hardly any impact on precipitation results.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado.

Current affiliation: Fraunhofer IAO, Stuttgart, Germany.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andreas Wagner, andreas.wagner@geo.uni-augsburg.de

Abstract

An increase in the spatial resolution of regional climate model simulations improves the representation of land surface characteristics and may allow the explicit calculation of important physical processes such as convection. The present study investigates further potential benefits with respect to precipitation, based on a small ensemble of high-resolution simulations with WRF with grid spacings up to 1 km. The skill of each experiment is evaluated regarding the temporal and spatial performance of the simulation of precipitation of one year over both a mountainous region in southwestern Germany and a mainly flat region in northern Germany. This study allows us to differentiate between the impact of grid spacing, topography, and convection parameterization. Furthermore, the performance of a state-of-the-art convection parameterization scheme in the gray zone of convection is evaluated against an explicit calculation of convection only. Our evaluation demonstrates the following: high-resolution simulations (5 and 1 km) are generally able to represent the diurnal cycle, structure, and intensity distribution of precipitation, when compared to observational datasets such as radar data and interpolated station data. The influence of the improved representation of the topography at higher resolution (1 km) becomes apparent in complex terrain, where the localization of precipitation maxima is more accurate, although these maxima are overestimated. In flat areas, differences in spatial evaluations arise between simulations with parameterized and explicitly calculated convection, whereas smaller grid spacings (1 km vs 5 km) show hardly any impact on precipitation results.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado.

Current affiliation: Fraunhofer IAO, Stuttgart, Germany.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andreas Wagner, andreas.wagner@geo.uni-augsburg.de
Save
  • Arnault, J., S. Wagner, T. Rummler, B. Fersch, J. Bliefernicht, S. Andresen, and H. Kunstmann, 2016: Role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for West Africa. J. Hydrometeor., 17, 14891516, https://doi.org/10.1175/JHM-D-15-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, https://doi.org/10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, https://doi.org/10.1002/2014JD021478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartels, H., E. Weigl, T. Reich, P. Lang, A. Wagner, O. Kohler, and N. Gerlach, 2004: Projekt RADOLAN—Routineverfahren zur Online-Aneichung der Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen (Ombrometer) [Routine procedure for online calibration of radar precipitation data using automatic rain gauges (ombrometer)]. Deutscher Wetterdienst, 111 pp.

  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, https://doi.org/10.1175/JAS-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, P., S. Wagner, H. Kunstmann, and G. Schädler, 2013: High resolution regional climate model simulations for Germany: Part I-Validation. Climate Dyn., 40, 401414, https://doi.org/10.1007/s00382-012-1508-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisson, E., M. Demuzere, and N. P. M. van Lipzig, 2016a: Modelling strategies for performing convective permitting climate simulations. Meteor. Z., 25, 149163, https://doi.org/10.1127/metz/2015/0598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisson, E., K. Van Weverberg, M. Demuzere, A. Devis, S. Saeed, M. Stengel, and N. P. M. van Lipzig, 2016b: How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Climate Dyn., 47, 30433061, https://doi.org/10.1007/s00382-016-3012-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S., E. Kendon, H. Fowler, S. Blenkinsop, C. A. Ferro, and D. B. Stephenson, 2013: Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Climate Dyn., 41, 14751495, https://doi.org/10.1007/s00382-012-1568-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. A. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, https://doi.org/10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deutsch, C. V., and A. G. Journel, 1992: GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, 340 pp.

  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, https://doi.org/10.1007/s00382-014-2242-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franco, M., R. Sanchez-Diezma, and D. Sempere-Torres, 2006: Improvements in weather radar rain rate estimates using a method for identifying the vertical profile of reflectivity from volume radar scans. Meteor. Z., 15, 521536, https://doi.org/10.1127/0941-2948/2006/0154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., L. Schade, R. Knoche, A. Pfeiffer, and J. Egger, 2000: Nonhydrostatic climate simulations of precipitation over complex terrain. J. Geophys. Res., 105, 29 59529 608, https://doi.org/10.1029/2000JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haylock, M., N. Hofstra, A. Klein Tank, E. Klok, P. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinzeller, D., W. Junkermann, and H. Kunstmann, 2016: Anthropogenic aerosol emissions and rainfall decline in southwestern Australia: Coincidence or causality? J. Climate, 29, 84718493, https://doi.org/10.1175/JCLI-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, and C. Schär, 2008: Towards climate simulations at cloud-resolving scales. Meteor. Z., 17, 383394, https://doi.org/10.1127/0941-2948/2008/0303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2014: Euro-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, https://doi.org/10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E., N. Roberts, C. Senior, and M. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, https://doi.org/10.1175/JCLI-D-11-00562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, C., J. Bliefernicht, D. Heinzeller, U. Gessner, I. Klein, and H. Kunstmann, 2017: Feedback of observed interannual vegetation change: A regional climate model analysis for the West African monsoon. Climate Dyn., 48, 28372858, https://doi.org/10.1007/s00382-016-3237-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. G., and Coauthors, 2007: Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models. Proc. Natl. Acad. Sci. USA, 104, 12 25912 264, https://doi.org/10.1073/pnas.0608144104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev., 7, 12971333, https://doi.org/10.5194/gmd-7-1297-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., B. Vignal, B.-C. Seo, and G. Villarini, 2011: Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity. J. Hydrol., 402, 306316, https://doi.org/10.1016/j.jhydrol.2011.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., and C. Stadler, 2005: High resolution distributed atmospheric-hydrological modelling for alpine catchments. J. Hydrol., 314, 105124, https://doi.org/10.1016/j.jhydrol.2005.03.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., K. Schneider, R. Forkel, and R. Knoche, 2004: Impact analysis of climate change for an alpine catchment using high resolution dynamic downscaling of ECHAM4 time slices. Hydrol. Earth Syst. Sci., 8, 10311045, https://doi.org/10.5194/hess-8-1031-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82, 6780, https://doi.org/10.2151/jmsj.82.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langhans, W., J. Schmidli, and C. Schär, 2012: Bulk convergence of cloud-resolving simulations of moist convection over complex terrain. J. Atmos. Sci., 69, 22072228, https://doi.org/10.1175/JAS-D-11-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutwyler, D., D. Lüthi, N. Ban, O. Fuhrer, and C. Schär, 2017: Evaluation of the convection-resolving climate modeling approach on continental scales. J. Geophys. Res. Atmos., 122, 52375258, https://doi.org/10.1002/2016JD026013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., 2016: The representation of cumulus convection in high-resolution simulations of the 2013 Colorado Front Range flood. Mon. Wea. Rev., 144, 42654278, https://doi.org/10.1175/MWR-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matte, D., R. Laprise, J. Thriault, and P. Lucas-Picher, 2017: Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Climate Dyn., 49, 563574, https://doi.org/10.1007/s00382-016-3358-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A., 2013: Added value of convection permitting climate simulations. Scientific Rep. 532013, Wegener Center Verlag, University of Graz, Graz, Austria, 168 pp., http://wegcwww.uni-graz.at/publ/wegcreports/2013/WCV-SciRep-No53-APrein-Jul2013.pdf.

  • Prein, A., and A. Gobiet, 2011: NHCM-1:Non-hydrostatic climate modelling. Part I: Defining and detecting added value in cloud-resolving climate simulations. Wegener Center Tech. Rep. 392011, Wegener Center Verlag, University of Graz, Graz, Austria, 74 pp., http://wegcwww.uni-graz.at/publ/wegcreports/2011/WCV-SciRep-No39-APreinAGobiet-Feb2011.pdf.

  • Prein, A., A. Gobiet, M. Suklitsch, H. Truhetz, N. Awan, K. Keuler, and G. Georgievski, 2013a: Added value of convection permitting seasonal simulations. Climate Dyn., 41, 26552677, https://doi.org/10.1007/s00382-013-1744-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A., G. Holland, R. Rasmussen, J. Done, K. Ikeda, M. Clark, and C. Liu, 2013b: Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J. Climate, 26, 48484857, https://doi.org/10.1175/JCLI-D-12-00727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauthe, M., H. Steiner, U. Riediger, A. Mazurkiewicz, and A. Gratzki, 2013: A Central European precipitation climatology Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteor. Z., 22, 235256, https://doi.org/10.1127/0941-2948/2013/0436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., 2008: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163169, https://doi.org/10.1002/met.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N., and H. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B., C. Piani, W. Ingram, D. Stone, and M. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190, https://doi.org/10.1007/s00382-007-0280-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seltmann, J., 1997: Radarforschung im DWD: Vom Scan zum Produkt. Promet, 26, 32–42.

  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, https://doi.org/10.1175/JAS-D-12-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smiatek, G., H. Kunstmann, and A. Senatore, 2016: EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos., 121, 77107728, https://doi.org/10.1002/2015JD024727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Vignal, B., H. Andrieu, and H. Creutin, 1999: Identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor., 38, 12141228, https://doi.org/10.1175/1520-0450(1999)038<1214:IOVPOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, A., J. Seltmann, and H. Kunstmann, 2012: Joint statistical correction of clutters, spokes and beam height for a radar derived precipitation climatology in southern Germany. Hydrol. Earth Syst. Sci., 16, 41014117, https://doi.org/10.5194/hess-16-4101-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M., W. Skamarock, and J. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, https://doi.org/10.1175/2008MWR2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weusthoff, T., F. Ament, M. Arpagaus, and M. Rotach, 2010: Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP D-PHASE. Mon. Wea. Rev., 138, 34183433, https://doi.org/10.1175/2010MWR3380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the terra incognita. J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., J. Simon, and F. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, https://doi.org/10.1175/JAS-D-13-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 895 223 19
PDF Downloads 834 165 11