Microphysics and Radiation Effect of Dust on Saharan Air Layer: An HS3 Case Study

Zhining Tao Universities Space Research Association, Columbia, Maryland
NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Zhining Tao in
Current site
Google Scholar
PubMed
Close
,
Scott A. Braun NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Scott A. Braun in
Current site
Google Scholar
PubMed
Close
,
Jainn J. Shi NASA Goddard Space Flight Center, Greenbelt, Maryland
Morgan State University, Baltimore, Maryland

Search for other papers by Jainn J. Shi in
Current site
Google Scholar
PubMed
Close
,
Mian Chin NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Mian Chin in
Current site
Google Scholar
PubMed
Close
,
Dongchul Kim Universities Space Research Association, Columbia, Maryland
NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dongchul Kim in
Current site
Google Scholar
PubMed
Close
,
Toshihisa Matsui NASA Goddard Space Flight Center, Greenbelt, Maryland
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Toshihisa Matsui in
Current site
Google Scholar
PubMed
Close
, and
Christa D. Peters-Lidard NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A Saharan air layer (SAL) event associated with a nondeveloping African easterly wave (AEW) over the main development region of the eastern Atlantic was sampled by the NASA Global Hawk aircraft on 24–25 August 2013 during the NASA Hurricane and Severe Storm Sentinel (HS3) campaign and was simulated with the NASA Unified Weather Research and Forecasting (NU-WRF) Model. Airborne, ground-based, and spaceborne measurements were used to evaluate the model performance. The microphysical and radiative effects of dust and other aerosols on the SAL structure and environment were investigated with the factor-separation method. The results indicate that relative to a simulation without dust–radiative and microphysical impacts, Saharan dust and other aerosols heated the SAL air mainly through shortwave heating by the direct aerosol–radiation (AR) effect, resulting in a warmer (up to 0.6 K) and drier (up to 5% RH reduction) SAL and maintaining the strong temperature inversion at the base of the SAL in the presence of predominant longwave cooling. Radiative heating of the dust accentuated a vertical circulation within the dust layer, in which air rose (sank) in the northern (southern) portions of the dust layer. Furthermore, above and to the south of the dust layer, both the microphysical and radiative impacts of dust tended to counter the vertical motions associated with the Hadley circulation, causing a small weakening and southward shift of convection in the intertropical convergence zone (ITCZ) and reduced anvil cloud to the north. Changes in moisture and cloud/precipitation hydrometeors were largely driven by the dust-induced changes in vertical motion. Dust strengthened the African easterly jet by up to ~1 m s−1 at the southern edge of the jet, primarily through the AR effect, and produced modest increases in vertical wind shear within and in the vicinity of the dust layer. These modulations of the SAL and AEW environment clearly contributed to the nondevelopment of this AEW.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhining Tao, zhining.tao@nasa.gov

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Abstract

A Saharan air layer (SAL) event associated with a nondeveloping African easterly wave (AEW) over the main development region of the eastern Atlantic was sampled by the NASA Global Hawk aircraft on 24–25 August 2013 during the NASA Hurricane and Severe Storm Sentinel (HS3) campaign and was simulated with the NASA Unified Weather Research and Forecasting (NU-WRF) Model. Airborne, ground-based, and spaceborne measurements were used to evaluate the model performance. The microphysical and radiative effects of dust and other aerosols on the SAL structure and environment were investigated with the factor-separation method. The results indicate that relative to a simulation without dust–radiative and microphysical impacts, Saharan dust and other aerosols heated the SAL air mainly through shortwave heating by the direct aerosol–radiation (AR) effect, resulting in a warmer (up to 0.6 K) and drier (up to 5% RH reduction) SAL and maintaining the strong temperature inversion at the base of the SAL in the presence of predominant longwave cooling. Radiative heating of the dust accentuated a vertical circulation within the dust layer, in which air rose (sank) in the northern (southern) portions of the dust layer. Furthermore, above and to the south of the dust layer, both the microphysical and radiative impacts of dust tended to counter the vertical motions associated with the Hadley circulation, causing a small weakening and southward shift of convection in the intertropical convergence zone (ITCZ) and reduced anvil cloud to the north. Changes in moisture and cloud/precipitation hydrometeors were largely driven by the dust-induced changes in vertical motion. Dust strengthened the African easterly jet by up to ~1 m s−1 at the southern edge of the jet, primarily through the AR effect, and produced modest increases in vertical wind shear within and in the vicinity of the dust layer. These modulations of the SAL and AEW environment clearly contributed to the nondevelopment of this AEW.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhining Tao, zhining.tao@nasa.gov

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Save
  • Barkan, J., H. Kutiel, P. Alpert, and P. Kishcha, 2004: Synoptics of dust intrusion days from the African continent into the Atlantic Ocean. J. Geophys. Res., 109, D08201, https://doi.org/10.1029/2003JD004416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben-Ami, Y., I. Koren, and O. Altaratz, 2009: Patterns of North African dust transport over the Atlantic: Winter vs. summer, based on CALIPSO first year data. Atmos. Chem. Phys., 9, 78677875, https://doi.org/10.5194/acp-9-7867-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, https://doi.org/10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretl, S., P. Reutter, C. C. Raible, S. Ferrachat, C. Schnadt Poberaj, L. E. Revell, and U. Lohmann, 2015: The influence of absorbed solar radiation by Saharan dust on hurricane genesis. J. Geophys. Res. Atmos., 120, 19021917, https://doi.org/10.1002/2014JD022441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1979: Atmospheric turbidity in Saharan dust outbreaks as determined by analyses of satellite brightness data. Mon. Wea. Rev., 107, 322335, https://doi.org/10.1175/1520-0493(1979)107<0322:ATISDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., S.-H. Wang, and M. Waylonis, 2010: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res., 115, D21202, https://doi.org/10.1029/2010JD014158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., Y.-C. Liu, T. R. Nathan, C. Davis, R. Torn, N. Sowa, C.-T. Cheng, and J.-P. Chen, 2015: Modeling the effects of dust-radiative forcing on the movement of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 141, 25632570, https://doi.org/10.1002/qj.2542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chin, M., T. Diehl, P. Ginoux, and W. Malm, 2007: Intercontinental transport of pollution and dust aerosols: Implications for regional air quality. Atmos. Chem. Phys., 7, 55015517, https://doi.org/10.5194/acp-7-5501-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization (CLIRAD-SW) for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, 38 pp.

  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan air layer: Results from 2002. J. Climate, 21, 52425253, https://doi.org/10.1175/2008JCLI1868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, https://doi.org/10.1029/2006GL026408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2007: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys., 7, 33853398, https://doi.org/10.5194/acp-7-3385-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, https://doi.org/10.1029/2000JD000053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, S. L., 2003: A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles, 17, 1097, https://doi.org/10.1029/2003GB002079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210, https://doi.org/10.5194/acp-6-3181-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Coauthors, 2010: LASE measurements of water vapor, aerosol, and cloud distributions in Saharan air layers and tropical disturbances. J. Atmos. Sci., 67, 10261047, https://doi.org/10.1175/2009JAS3136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, https://doi.org/10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and Coauthors, 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80, 10451076, https://doi.org/10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res., 102, 17 05117 067, https://doi.org/10.1029/96JD03988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, A. J. Prenni, C. M. Carrico, B. Ervens, and G. Feingold, 2006: Water activity and activation diameters from hygroscopicity data—Part II: Application to organic species. Atmos. Chem. Phys., 6, 795809, https://doi.org/10.5194/acp-6-795-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S. E., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, https://doi.org/10.1175/JAS-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, https://doi.org/10.5194/amt-6-2989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., and Q.-L. Min, 2010: Impacts of mineral dust on the vertical structure of precipitation. J. Geophys. Res., 115, D09203, https://doi.org/10.1029/2009JD011925.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548, https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, P.-L., K. Zhang, J. J. Shi, T. Matsui, and A. Arking, 2012: Direct radiative effect of mineral dust on the development of African easterly waves in late summer, 2003–07. J. Appl. Meteor. Climatol., 51, 20902104, https://doi.org/10.1175/JAMC-D-11-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteor. Soc., 94, 16531660, https://doi.org/10.1175/BAMS-D-12-00160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2014: Introducing multisensor satellite radiance-based evaluation for regional Earth system modeling. J. Geophys. Res. Atmos., 119, 84508475, https://doi.org/10.1002/2013JD021424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M., and D. Hlavka, 2015: Hurricane and Severe Storm Sentinel (HS3) Global Hawk Cloud Physics Lidar (CPL) [ATB files]. NASA Global Hydrology Resource Center DAAC, http://doi.org/10.5067/HS3/CPL/DATA202.

    • Crossref
    • Export Citation
  • Messager, C., D. J. Parker, O. Reitebuch, A. Agustí-Panareda, C. M. Taylor, and J. Cuesta, 2010: Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Quart. J. Roy. Meteor. Soc., 136, 107124, https://doi.org/10.1002/qj.469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q.-L., R. Li, B. Lin, E. Joseph, S. Wang, Y. Hu, V. Morris, and F. Chang, 2009: Evidence of mineral dust altering cloud microphysics and precipitation. Atmos. Chem. Phys., 9, 32233231, https://doi.org/10.5194/acp-9-3223-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2005: Profile observations of the Saharan air layer during AEROSE 2004. Geophys. Res. Lett., 32, L05815, https://doi.org/10.1029/2004GL022028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, S.-T., A. Ott, D. W. Martin, and J. A. Young, 1991: Analysis of a trans-Atlantic Saharan dust outbreak based on satellite and GATE data. Mon. Wea. Rev., 119, 18321850, https://doi.org/10.1175/1520-0493(1991)119<1832:AOATAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., C. D. Thorncroft, R. R. Burton, and A. Diongue-Niang, 2005: Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quart. J. Roy. Meteor. Soc., 131, 14611482, https://doi.org/10.1256/qj.03.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2015: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ. Modell. Software, 67, 149159, https://doi.org/10.1016/j.envsoft.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1970: Radon-222 in the North Atlantic trade winds: Its relationship to dust transport from Africa. Science, 167, 974977, https://doi.org/10.1126/science.167.3920.974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77, 52555265, https://doi.org/10.1029/JC077i027p05255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., E. Bonatti, C. Schubert, and T. N. Carlson, 1970: Dust in the Caribbean atmosphere traced to an African dust storm. Earth Planet. Sci. Lett., 9, 287293, https://doi.org/10.1016/0012-821X(70)90039-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, https://doi.org/10.1002/qj.977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. Lau, and A. da Silva, 2011: Impact of interactive aerosol on the African easterly jet in the NASA GEOS-5 global forecasting system. Wea. Forecasting, 26, 504519, https://doi.org/10.1175/WAF-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, https://doi.org/10.1175/JAS3385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, W. R., H. E. Fuelberg, R. A. Kahn, and D. M. Winker, 2011: An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS. Atmos. Chem. Phys., 11, 57195744, https://doi.org/10.5194/acp-11-5719-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2014: Implementation of an aerosol–cloud microphysics–radiation coupling into the NASA Unified WRF: Simulation results for the 6-7 August 2006 AMMA special observing period. Quart. J. Roy. Meteor. Soc., 140, 21582175, https://doi.org/10.1002/qj.2286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, U., and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115, https://doi.org/10.1175/1520-0469(1993)050<2107:FSINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D., W. K. M. Lau, M. Kafatos, Z. Boybeyi, G. Leptoukh, C. Yang, and R. Yang, 2009: Numerical simulations of the impacts of the Saharan air layer on Atlantic tropical cyclone development. J. Climate, 22, 62306250, https://doi.org/10.1175/2009JCLI2738.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GEC) model. Meteor. Atmos. Phys., 82, 97137, https://doi.org/10.1007/s00703-001-0594-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations, J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Peters-Lidard, and A. Hou, 2011: The impact of microphysical schemes on hurricane intensity and track. Asia-Pac. J. Atmos. Sci., 47, 116, https://doi.org/10.1007/s13143-011-1001-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., S. M. Larson, D. J. Wuebbles, A. Williams, and M. Caughey, 2003: A summer simulation of biogenic contributions to ground-level ozone over the continental United States. J. Geophys. Res., 108, 4404, https://doi.org/10.1029/2002JD002945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., J. A. Santanello, M. Chin, S. Zhou, Q. Tan, E. M. Kemp, and C. D. Peters-Lidard, 2013: Effect of land cover on atmospheric processes and air quality over the continental United States—A NASA Unified WRF (NU-WRF) Model study. Atmos. Chem. Phys., 13, 62076226, https://doi.org/10.5194/acp-13-6207-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., H. Yu, and M. Chin, 2015: The role of aerosol-cloud-radiation interactions in regional air quality—A NU-WRF study over the United States. Atmosphere, 6, 10451068, https://doi.org/10.3390/atmos6081045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, Z., H. Yu, and M. Chin, 2016: Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol–cloud–radiation interactions. Atmos. Environ., 125, 4860, https://doi.org/10.1016/j.atmosenv.2015.10.083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, https://doi.org/10.1002/qj.49712051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., 2015: Measurements of Saharan dust in convective clouds over the tropical eastern Atlantic Ocean. J. Atmos. Sci., 72, 7581, https://doi.org/10.1175/JAS-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2009: Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys. Res. Lett., 36, L01807, https://doi.org/10.1029/2008GL035846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G., 2015: Hurricane and Severe Storm Sentinel (HS3) Global Hawk AVAPS Dropsonde System. NASA Global Hydrology Resource Center DAAC, https://doi.org/10.5065/D6736P31.

    • Crossref
    • Export Citation
  • Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, and A. J. Soja, 2011: The Fire Inventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev., 4, 625641, https://doi.org/10.5194/gmd-4-625-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., K. Lau, and K.-M. Kim, 2010: A northward shift of the North Atlantic Ocean intertropical convergence zone in response to summertime Saharan dust outbreaks. Geophys. Res. Lett., 37, L04804, https://doi.org/10.1029/2009GL041774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., 2015: The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state. J. Adv. Model. Earth Syst., 7, 18721884, https://doi.org/10.1002/2015MS000543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Coauthors, 2009: The Saharan air layer and the fate of African easterly waves—NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156, https://doi.org/10.1175/2009BAMS2728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1308 586 161
PDF Downloads 531 161 11