Damping Acoustic Modes in Compressible Horizontally Explicit Vertically Implicit (HEVI) and Split-Explicit Time Integration Schemes

Joseph B. Klemp National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Joseph B. Klemp in
Current site
Google Scholar
PubMed
Close
,
William C. Skamarock National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William C. Skamarock in
Current site
Google Scholar
PubMed
Close
, and
Soyoung Ha National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Soyoung Ha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Although the equations of motion for a compressible atmosphere accommodate acoustic waves, these modes typically play an insignificant role in atmospheric processes of physical interest. In numerically integrating the compressible equations, it is often beneficial to filter these acoustic modes to control acoustic noise and prevent its artificial growth. Here, a new technique is proposed for filtering the 3D divergence that may damp acoustic modes more effectively than filters previously implemented in numerical modes using horizontally explicit vertically implicit (HEVI) and split-explicit time integration schemes. With this approach, a divergence damping term is added as a final adjustment to the horizontal velocity at the new time level after completing the vertically implicit portion of the time step. In this manner, the divergence used in the filter term has exactly the same numerical form as that used in the discrete pressure equation. Analysis of the dispersion equation for this form of the filter documents its stability characteristics and confirms that it effectively damps acoustic modes with little artificial influence on the amplitude or propagation of the gravity wave modes that are of physical interest. Some specific aspects of the implementation of the filter in the Model for Prediction Across Scales (MPAS) are discussed, and results are presented to illustrate some of the beneficial aspects of suppressing acoustic noise.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Joseph B. Klemp, klemp@ucar.edu

Abstract

Although the equations of motion for a compressible atmosphere accommodate acoustic waves, these modes typically play an insignificant role in atmospheric processes of physical interest. In numerically integrating the compressible equations, it is often beneficial to filter these acoustic modes to control acoustic noise and prevent its artificial growth. Here, a new technique is proposed for filtering the 3D divergence that may damp acoustic modes more effectively than filters previously implemented in numerical modes using horizontally explicit vertically implicit (HEVI) and split-explicit time integration schemes. With this approach, a divergence damping term is added as a final adjustment to the horizontal velocity at the new time level after completing the vertically implicit portion of the time step. In this manner, the divergence used in the filter term has exactly the same numerical form as that used in the discrete pressure equation. Analysis of the dispersion equation for this form of the filter documents its stability characteristics and confirms that it effectively damps acoustic modes with little artificial influence on the amplitude or propagation of the gravity wave modes that are of physical interest. Some specific aspects of the implementation of the filter in the Model for Prediction Across Scales (MPAS) are discussed, and results are presented to illustrate some of the beneficial aspects of suppressing acoustic noise.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Joseph B. Klemp, klemp@ucar.edu
Save
  • Doms, G., and M. Baldauf, 2015: A description of the Nonhydrostatic Regional COSMO-Model. Part I: Dynamics and numerics. Consortium for Small-Scale Modelling Rep., 155 pp., http://www.cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf.

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513, https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2010: Numerical Methods for Fluid Dynamics. Springer-Verlag, 516 pp.

    • Crossref
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassmann, A., 2005: An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteor. Atmos. Phys., 88, 2338, https://doi.org/10.1007/s00703-003-0053-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gassmann, A., and H.-J. Herzog, 2007: A consistent time-split numerical scheme applied to the nonhydrostatic compressible equations. Mon. Wea. Rev., 135, 2036, https://doi.org/10.1175/MWR3275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, S., C. Snyder, W. C. Skamarock, J. L. Anderson, and N. Collins, 2017: Ensemble Kalman filter data assimilation for the Model for Prediction Across Scales (MPAS). Mon. Wea. Rev., 145, 46734692, https://doi.org/10.1175/MWR-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Predictability and error growth dynamics in cloud- resolving models. J. Atmos. Sci., 64, 44674478, https://doi.org/10.1175/2007JAS2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and P. Lynch, 1993: Diabatic digital-filtering initialization: Application to the HIRLAM Model. Mon. Wea. Rev., 121, 589603, https://doi.org/10.1175/1520-0493(1993)121<0589:DDFIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, https://doi.org/10.1175/MWR3440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., W. W. Grabowski, and P. K. Smolarkiewicz, 2014: Anelastic and compressible simulation of moist deep convection. J. Atmos. Sci., 71, 37673787, https://doi.org/10.1175/JAS-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 21922210, https://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, S.-J., N. Wood, and H. Weller, 2014: Numerical analyses of Runge–Kutta implicit–explicit schemes for horizontally explicit, vertically implicit solutions of atmospheric models. Quart. J. Roy. Meteor. Soc., 140, 16541669, https://doi.org/10.1002/qj.2246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM Model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. D., K. H. Bergman, R. E. Kistler, G. E. Rasch, and D. S. Gordon, 1979: The NMC Operational Global Data Assimilation System. Mon. Wea. Rev., 107, 14451461, https://doi.org/10.1175/1520-0493(1979)107<1445:TNOGDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179, https://doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, https://doi.org/10.1016/j.jcp.2007.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Wea. Rev., 120, 21092127, https://doi.org/10.1175/1520-0493(1992)120<2109:TSOTSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tessellations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119, 22062223, https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanguay, M., A. Robert, and R. Laprise, 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 118, 19701980, https://doi.org/10.1175/1520-0493(1990)118<1970:ASISLF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapp, M. C., and P. W. White, 1976: A non-hydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc., 102, 277296, https://doi.org/10.1002/qj.49710243202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Temperton, C., and D. Williamson, 1981: Normal mode initialization for a multilevel grid-point model. Part I: Linear aspects. Mon. Wea. Rev., 109, 729743, https://doi.org/10.1175/1520-0493(1981)109<0729:NMIFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and Y. Ogura, 1972: The pressure perturbation and the numerical modeling of a cloud. J. Atmos. Sci., 29, 12951307, https://doi.org/10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D., and C. Temperton, 1981: Normal mode initialization for a multilevel grid-point model. Part II: Nonlinear aspects. Mon. Wea. Rev., 109, 744757, https://doi.org/10.1175/1520-0493(1981)109<0744:NMIFAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2015: The ICON (Icosahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563579, https://doi.org/10.1002/qj.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 464 170 18
PDF Downloads 496 153 9