Evolution of GLM-Observed Total Lightning in Hurricane Maria (2017) during the Period of Maximum Intensity

Alexandre O. Fierro Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexandre O. Fierro in
Current site
Google Scholar
PubMed
Close
,
Stephanie N. Stevenson Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, and NOAA/National Hurricane Center, Miami, Florida

Search for other papers by Stephanie N. Stevenson in
Current site
Google Scholar
PubMed
Close
, and
Robert M. Rabin NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Robert M. Rabin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Total lightning data obtained from the Geostationary Lightning Mapper (GLM) were analyzed to present a first glimpse of relationships with intensity variations and convective evolution in Hurricane Maria (2017). The GLM has made it possible, for the first time, to analyze total lightning within a major hurricane for a long period, far from ground-based detection networks. It is hoped that these observations could enlighten some of the complex relationships existing between intensity fluctuations and the distribution of electrified convection in these systems.

Prior to rapidly intensifying from a category 1 to category 5 storm, Maria produced few inner-core flashes. Increases in total lightning in the inner core (r ≤ 100 km) occurred during both the beginning and end of an intensification cycle, while lightning increases in the outer region (100 < r ≤ 500 km) occurred earlier in the intensification cycle and during weakening. Throughout the analysis period, the largest lightning rates in the outer region were consistently located in the southeastern quadrant, a pattern consistent with modeling studies of electrification within hurricanes. Lightning in the inner core was generally tightly clustered within a 50-km radius from the center and most often found in the southeastern portion of the eyewall, which is atypical. Bootstrapped correlation statistics revealed that the most robust and systematic relationship with storm intensity was obtained for inner-core lightning and maximum surface wind speed. A brief comparison between flash rates from GLM and a very low-frequency ground-based network revealed that not all lightning peaks are seen equally, with hourly flash-rate ratios between both systems sometimes exceeding two orders of magnitude.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0066.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre O. Fierro, alex.fierro@noaa.gov

Abstract

Total lightning data obtained from the Geostationary Lightning Mapper (GLM) were analyzed to present a first glimpse of relationships with intensity variations and convective evolution in Hurricane Maria (2017). The GLM has made it possible, for the first time, to analyze total lightning within a major hurricane for a long period, far from ground-based detection networks. It is hoped that these observations could enlighten some of the complex relationships existing between intensity fluctuations and the distribution of electrified convection in these systems.

Prior to rapidly intensifying from a category 1 to category 5 storm, Maria produced few inner-core flashes. Increases in total lightning in the inner core (r ≤ 100 km) occurred during both the beginning and end of an intensification cycle, while lightning increases in the outer region (100 < r ≤ 500 km) occurred earlier in the intensification cycle and during weakening. Throughout the analysis period, the largest lightning rates in the outer region were consistently located in the southeastern quadrant, a pattern consistent with modeling studies of electrification within hurricanes. Lightning in the inner core was generally tightly clustered within a 50-km radius from the center and most often found in the southeastern portion of the eyewall, which is atypical. Bootstrapped correlation statistics revealed that the most robust and systematic relationship with storm intensity was obtained for inner-core lightning and maximum surface wind speed. A brief comparison between flash rates from GLM and a very low-frequency ground-based network revealed that not all lightning peaks are seen equally, with hourly flash-rate ratios between both systems sometimes exceeding two orders of magnitude.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0066.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexandre O. Fierro, alex.fierro@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 37.58 MB)
Save
  • Abarca, S. F., K. L. Corbosiero, and D. Vollaro, 2011: The World Wide Lightning Location Network and convective activity in tropical cyclones. Mon. Wea. Rev., 139, 175191, https://doi.org/10.1175/2010MWR3383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 2003: Hot towers and hurricanes: Early observations, theories, and models. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM)—A Tribute to Dr. Joanne Simpson, Meteor. Monogr., No. 51, Amer. Meteor. Soc., 139–148, https://doi.org/10.1175/0065-9401(2003)029<0139:CHTAHE>2.0.CO;2.

    • Crossref
    • Export Citation
  • Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 20042028, https://doi.org/10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122, https://doi.org/10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bovalo, C., C. Barthe, N. Yu, and N. Bègue, 2014: Lightning activity within tropical cyclones in the south west Indian Ocean. J. Geophys. Res. Atmos., 119, 82318244, https://doi.org/10.1002/2014JD021651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., C. P. R. Saunders, R. P. Mitzeva, and S. L. Peck, 1997: The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos. Res., 43, 277295, https://doi.org/10.1016/S0169-8095(96)00043-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, J., and K. Tory, 2014: On the use of a system-scale ascent/descent diagnostic for short-term forecasting of tropical cyclone development, intensification and decay. Trop. Cyclone Res. Rev., 3, 7890.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364, https://doi.org/10.1007/BF01032000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801, https://doi.org/10.1175/1520-0493(2002)130<0785:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 1999: The Lightning Imaging Sensor. Proc. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, International Commission on Atmospheric Electricity, 746–749.

  • Chronis, T., L. D. Carey, C. J. Schultz, E. V. Schultz, K. M. Calhoun, and S. J. Goodman, 2015: Exploring lightning jump characteristics. Wea. Forecasting, 30, 2337, https://doi.org/10.1175/WAF-D-14-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, https://doi.org/10.1175/MWR-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477494, https://doi.org/10.1175/2010JAS3659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and E. R. Mansell, 2017: Electrification and lightning in idealized simulations of a hurricane-like vortex subject to wind shear and sea surface temperature cooling. J. Atmos. Sci., 74, 20232041, https://doi.org/10.1175/JAS-D-16-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and E. R. Mansell, 2018: Relationships between electrification and storm-scale properties based on idealized simulations of an intensifying hurricane-like vortex. J. Atmos. Sci., 75, 657674, https://doi.org/10.1175/JAS-D-17-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., M. S. Gilmore, E. R. Mansell, L. J. Wicker, and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 31493172, https://doi.org/10.1175/MWR3231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., L. M. Leslie, E. R. Mansell, J. M. Straka, D. R. MacGorman, and C. Ziegler, 2007: A high-resolution simulation of the microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98, 1333, https://doi.org/10.1007/s00703-006-0237-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., X.-M. Shao, T. Hamlin, J. M. Reisner, and J. D. Harlin, 2011: Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of Hurricanes Rita and Katrina. Mon. Wea. Rev., 139, 14921504, https://doi.org/10.1175/2010MWR3532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, D. R. MacGorman, and C. Ziegler, 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW Model: Benchmark simulations with a continental squall line, a tropical cyclone, and a winter storm. Mon. Wea. Rev., 141, 23902415, https://doi.org/10.1175/MWR-D-12-00278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. Ziegler, and D. R. MacGorman, 2015: Explicitly simulated electrification and lightning within a tropical cyclone based on the environment of Hurricane Isaac (2012). J. Atmos. Sci., 72, 41674193, https://doi.org/10.1175/JAS-D-14-0374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, B. R., E. C. Bruning, S. A. Rutledge, L. D. Carey, P. R. Krehbiel, and W. Rison, 2016: Climatological analyses of LMA data with an open-source lightning flash-clustering algorithm. J. Geophys. Res. Atmos., 121, 86258648, https://doi.org/10.1002/2015JD024663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 11851188, https://doi.org/10.1029/GL015i011p01185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, https://doi.org/10.1016/j.atmosres.2004.11.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurka, J. J., T. A. Schmit, T. M. Renkevens, M. M. Gunshor, and J. Li, 2006: 2006 update on baseline instruments for GOES-R series. Proc. Atmospheric and Environmental Remote Sensing Data Processing and Utilization II: Perspective on Calibration/Validation Initiatives and Strategies, San Diego, CA, International Society for Optical Engineering, 63010H, https://doi.org/10.1117/12.683701.

    • Crossref
    • Export Citation
  • Hazelton, A. T., R. E. Hart, and R. F. Rogers, 2017: Analyzing simulated convective bursts in two Atlantic hurricanes. Part II: Intensity change due to bursts. Mon. Wea. Rev., 145, 30953117, https://doi.org/10.1175/MWR-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., K. L. Cummins, and W. A. Brooks, 2016: Seasonal, monthly, and weekly distributions of NLDN and GLD360 cloud-to-ground lightning. Mon. Wea. Rev., 144, 28552870, https://doi.org/10.1175/MWR-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., R. Holzworth, J. Harlin, R. Dowden, and E. Lay, 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., 23, 10821092, https://doi.org/10.1175/JTECH1902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, https://doi.org/10.1029/2004GL021616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, C. R. Sampson, J. E. Peak, J. Cummings, and W. H. Schubert, 2013: Upper oceanic energy response to tropical cyclone passage. J. Climate, 26, 26312650, https://doi.org/10.1175/JCLI-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., and Coauthors, 2004: North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analyses. J. Atmos. Oceanic Technol., 21, 543558, https://doi.org/10.1175/1520-0426(2004)021<0543:NALMAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2015: Hurricane wind–pressure relationship and eyewall replacement cycles. Wea. Forecasting, 30, 177181, https://doi.org/10.1175/WAF-D-14-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. Wea. Forecasting, 27, 484488, https://doi.org/10.1175/WAF-D-11-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757, https://doi.org/10.1175/MWR3217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506, https://doi.org/10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and S. Heckman, 2012: Total lightning data and real-time severe storm prediction. TECO-2012: WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation, Brussels, Belgium, World Meteorological Organization, P5(10). http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-2012/Session5/P5_10_Liu_Total_Lightning_Data_and_Real-Time_Severe_Storm_Prediction.pdf.

  • Lyons, W. A., M. G. Venne, P. G. Black, and R. C. Gentry, 1989: Hurricane lightning: A new diagnostic tool for tropical storm forecasting? Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 2 pp.

  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221251, https://doi.org/10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., H. J. Christian, R. J. Blakeslee, D. J. Boccippio, S. J. Goodman, and W. L. Boeck, 2007: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res., 112, D09210, https://doi.org/10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and Coauthors, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medici, G., K. L. Cummins, D. J. Cecil, W. J. Koshak, and S. D. Rudlosky, 2017: The intracloud lightning fraction in the contiguous United States. Mon. Wea. Rev., 145, 44814499, https://doi.org/10.1175/MWR-D-16-0426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16 66516 676, https://doi.org/10.1029/94JD00722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. K. Moore, and V. P. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534, https://doi.org/10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and J. M. Coyne, 1999: Cloud-to-ground lightning in tropical cyclones (1986–1996). Preprints, 23rd Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 4A.12, https://ams.confex.com/ams/99annual/abstracts/1695.htm.

  • Rakov, V. A., 2016: Fundamentals of Lightning. Cambridge University Press, 257 pp.

    • Crossref
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, https://doi.org/10.1029/1999GL010856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Said, R. K., U. S. Inan, and K. L. Cummins, 2010: Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J. Geophys. Res., 115, D23108, https://doi.org/10.1029/2010JD013863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122, 18871896, https://doi.org/10.1175/1520-0493(1994)122<1887:CTGLIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 94913 956, https://doi.org/10.1029/97JD02644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., S. L. Peck, G. G. Aguirre Varela, E. E. Avila, and N. E. Castellano, 2001: A laboratory study of the influence of water vapour and mixing on the charge transfer process during collisions between ice crystal and graupel. Atmos. Res., 58, 187203, https://doi.org/10.1016/S0169-8095(01)00090-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and Coauthors, 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86, 398, https://doi.org/10.1029/2005EO420004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and J. L. Franklin, 1999: Potential vorticity asymmetries and tropical cyclone motion. Mon. Wea. Rev., 127, 124131, https://doi.org/10.1175/1520-0493(1999)127<0124:PVAATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, C. M. Rozoff, and J. Knaff, 2012: Hurricane eyewall replacement cycles and the relict inner eyewall circulation. Mon. Wea. Rev., 140, 40354045, https://doi.org/10.1175/MWR-D-11-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, K., and S. Businger, 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136, 17061726, https://doi.org/10.1175/2007MWR2150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and S. F. Abarca, 2016: Lightning in eastern North Pacific tropical cyclones: A comparison to the North Atlantic. Mon. Wea. Rev., 144, 225239, https://doi.org/10.1175/MWR-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, M. DeMaria, and J. L. Vigh, 2018: A 10-year survey of tropical cyclone inner-core lightning bursts and their relationship to intensity change. Wea. Forecasting, 33, 2336, https://doi.org/10.1175/WAF-D-17-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J. N., N. Solorzano, S. A. Cummer, and R. H. Holzworth, 2010: Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res., 115, A00E15, https://doi.org/10.1029/2009JA014777.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., R. F. Rogers, and P. D. Reasor, 2018: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761780, https://doi.org/10.1175/MWR-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, https://doi.org/10.1175/JAS3615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136, https://doi.org/10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., S. A. Rutledge, and W. Zhang, 2017: Relationships between total lightning, deep convection, and tropical cyclone intensity change. J. Geophys. Res. Atmos., 122, 70477063, https://doi.org/10.1002/2017JD027072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, S., T. Morimoto, T. Ushio, and Z. Kawasaki, 2009: A fifth-power relationship for lightning activity from Tropical Rainfall Measuring Mission satellite observations. J. Geophys. Res., 114, D09104, https://doi.org/10.1029/2008JD010370.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, https://doi.org/10.1175/2009JAS2824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 842 174 17
PDF Downloads 696 117 4