• Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, https://doi.org/10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, https://doi.org/10.1175/JCLI-D-13-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, https://doi.org/10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolado-Lavin, R., and A. C. Badea, 2008: Review of sensitivity analysis methods and experience for geological disposal of radioactive waste and spent nuclear fuel. European Commission Joint Research Centre Scientific and Technical Rep. EUR 23712 EN-2008, 84 pp., http://publications.jrc.ec.europa.eu/repository/bitstream/JRC49536/reqno_jrc49536_eur_23712en1.pdf.

  • Bowman, K., J. Sacks, and Y. Chang, 1993: Design and analysis of numerical experiments. J. Atmos. Sci., 50, 12671278, https://doi.org/10.1175/1520-0469(1993)050<1267:DAAONE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., S. A. Klein, D. D. Lucas, H.-Y. Ma, J. Tannahill, and S. Xie, 2015: The parametric sensitivity of CAM5’s MJO. J. Geophys. Res. Atmos., 120, 14241444, https://doi.org/10.1002/2014JD022507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., B. B. B. Booth, B. Bhaskaran, G. R. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2011: Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multi-model ensembles. Climate Dyn., 36, 17371766, https://doi.org/10.1007/s00382-010-0808-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., and R. Todling, 2010: Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Quart. J. Roy. Meteor. Soc., 136, 20002012, https://doi.org/10.1002/qj.693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, https://doi.org/10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, https://doi.org/10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, C. Amerault, and J. Moskaitis, 2012: Adjoint sensitivity and predictability of tropical cyclogenesis. J. Atmos. Sci., 69, 35353557, https://doi.org/10.1175/JAS-D-12-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. Amerault, C. A. Reynolds, and P. A. Reinecke, 2014: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Wea. Rev., 142, 320342, https://doi.org/10.1175/MWR-D-13-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 54975509, https://doi.org/10.1175/2007JCLI1571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, https://doi.org/10.1073/pnas.1301293110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591, https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J., 1991: Multivariate adaptive regression splines. Ann. Stat., 19, 167, https://doi.org/10.1214/aos/1176347963.

  • Friedman, J., and C. B. Roosen, 1995: An introduction to multivariate adaptive regression splines. Stat. Methods Med. Res., 4, 197217, https://doi.org/10.1177/096228029500400303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frolov, S., A. M. Baptista, T. K. Leen, Z. Lu, and R. van der Merwe, 2009: Fast data assimilation using a nonlinear Kalman filter and a model surrogate: An application to the Columbia River estuary. Dyn. Atmos. Oceans, 48, 1645, https://doi.org/10.1016/j.dynatmoce.2008.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, doi:https://doi.org/10.1175/JAS-D-13-066.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, S., K. Heitmann, D. Higdon, C. Nakhleh, and B. Williams, 2007: Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background. Phys. Rev. D, 76, 083503, https://doi.org/10.1103/PhysRevD.76.083503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and L. Lei, 2015: Multivariate ensemble sensitivity with localization. Mon. Wea. Rev., 143, 20132027, https://doi.org/10.1175/MWR-D-14-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., and D. J. Posselt, 2015: Impact of parameterized physical processes on simulated tropical cyclone characteristics in the Community Atmosphere Model. J. Climate, 28, 98579872, https://doi.org/10.1175/JCLI-D-15-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., D. J. Posselt, C. M. Zarzycki, and C. Jablonowski, 2015: A balanced tropical cyclone test case for AGCMs with background vertical wind shear. Mon. Wea. Rev., 143, 17621781, https://doi.org/10.1175/MWR-D-14-00366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegstad, B., and O. Henning, 2001: Uncertainty in production forecasts based on well observations, seismic data, and production history. SPE J., 6, 409424, https://doi.org/10.2118/74699-PA.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helton, J. C., and F. J. Davis, 2003: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf., 81, 2369, https://doi.org/10.1016/S0951-8320(03)00058-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higdon, D., M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, 2004: Combining field data and computer simulations for calibration and prediction. SIAM J. Sci. Comput., 26, 448466, https://doi.org/10.1137/S1064827503426693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. J., C. C. Weiss, and B. C. Ancell, 2016: Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation. Mon. Wea. Rev., 144, 41614182, https://doi.org/10.1175/MWR-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homma, T., and A. Saltelli, 1996: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf., 52, 117, https://doi.org/10.1016/0951-8320(96)00002-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., E. N. Anagnostou, and A. C. Bagtzoglou, 2006: On Latin Hypercube sampling for efficient uncertainty estimation of satellite rainfall observations in flood prediction. Comput. Geosci., 32, 776792, https://doi.org/10.1016/j.cageo.2005.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iman, R. L., and W. J. Conover, 1980: Small sample sensitivity analysis techniques for computer models with an application to risk assessment. Commun. Stat. Theory Methods, 9, 17491842, https://doi.org/10.1080/03610928008827996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iooss, B., and P. Lemaître, 2015: A review on global sensitivity analysis methods. Uncertainty Management in Simulation-Optimization of Complex Systems, G. Dellino and C. Meloni, Eds., Operations Research/Computer Science Interfaces Series, Vol. 59, Springer, 101–122, https://doi.org/10.1007/978-1-4899-7547-8_5, .

    • Crossref
    • Export Citation
  • Isukapalli, S. S., and P. G. Georgopoulos, 2001: Computational methods for sensitivity and uncertainty analysis for environmental and biological models. Rep. EPA/600/R-01-068, U.S. Environmental Protection Agency, Washington, DC, 158 pp.

  • Kennedy, M. C., and A. O’Hagan, 2001: Bayesian calibration of computer models. Roy. Stat. Soc., 63, 425464, https://doi.org/10.1111/1467-9868.00294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, https://doi.org/10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, L. A., K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen, 2011: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. Atmos. Chem. Phys., 11, 12 25312 273, https://doi.org/10.5194/acp-11-12253-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, L. A., K. J. Pringle, C. L. Reddington, G. W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K. S. Carslaw, 2013: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos. Chem. Phys., 13, 88798914, https://doi.org/10.5194/acp-13-8879-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logemann, K., J. O. Backhaus, and I. H. Harms, 2004: SNAC: A statistical emulator of the north-east Atlantic circulation. Ocean Modell., 7, 97110, https://doi.org/10.1016/S1463-5003(03)00039-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loh, W. L., 1996: On latin hypercube sampling. Ann. Stat., 24, 20582080, https://doi.org/10.1214/aos/1069362310.

  • MacDonald, B., P. Ranjan, and H. Chipman, 2015: GPfit: An R Package for fitting a Gaussian process model to deterministic simulator outputs. J. Stat. Software, 64 (12), https://doi.org/10.18637/jss.v064.i12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 38673893, https://doi.org/10.1175/JCLI-D-11-00346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., 2013: Variance-based sensitivity analysis: An illustration on the Lorenz’63 model. Mon. Wea. Rev., 141, 40694079, https://doi.org/10.1175/MWR-D-13-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., S. Sandgathe, and J. D. Doyle, 2014: Model tuning with canonical correlation analysis. Mon. Wea. Rev., 142, 20182027, https://doi.org/10.1175/MWR-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., 1991: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev., 119, 19541978, https://doi.org/10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mckay, M. D., R. J. Beckman, and W. J. Conover, 2000: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42, 5561, https://doi.org/10.1080/00401706.2000.10485979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLay, J. G., and M. Liu, 2014: Detecting dependence in the sensitive parameter space of a model using statistical inference and large forecast ensembles. Mon. Wea. Rev., 142, 37343755, https://doi.org/10.1175/MWR-D-13-00340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., R. Mizuta, and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, https://doi.org/10.1007/s00382-011-1223-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, https://doi.org/10.1038/nature02771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, https://doi.org/10.1029/2008GL034147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Hagan, A., M. C. Kennedy, and J. E. Oakley, 1999: Uncertainty analysis and other inference tools for complex computer codes. Bayesian Stat., 6, 503524.

    • Search Google Scholar
    • Export Citation
  • Poole, D., and A. E. Raftery, 2000: Inference for deterministic simulation models: The Bayesian melding approach. J. Amer. Stat. Assoc., 95, 12441255, https://doi.org/10.1080/01621459.2000.10474324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., 2016: A Bayesian examination of deep convective squall-line sensitivity to changes in cloud microphysical parameters. J. Atmos. Sci., 73, 637665, https://doi.org/10.1175/JAS-D-15-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and T. Vukicevic, 2010: Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon. Wea. Rev., 138, 15131535, https://doi.org/10.1175/2009MWR3094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and C. H. Bishop, 2012: Nonlinear parameter estimation: Comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140, 19571974, https://doi.org/10.1175/MWR-D-11-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., D. Hodyss, and C. H. Bishop, 2014: Errors in ensemble Kalman smoother estimates of cloud microphysical parameters. Mon. Wea. Rev., 142, 16311654, https://doi.org/10.1175/MWR-D-13-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., B. Fryxell, A. Molod, and B. Williams, 2016: Quantitative sensitivity analysis of physical parameterizations for cases of deep convection in the NASA GEOS-5. J. Climate, 29, 455479, https://doi.org/10.1175/JCLI-D-15-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranjan, P., R. Haynes, and R. Karsten, 2011: A computationally stable approach to Gaussian process interpolation of deterministic computer simulation data. Technometrics, 53, 366378, https://doi.org/10.1198/TECH.2011.09141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranson, M., C. Kousky, M. Ruth, L. Jantarasami, A. Crimmins, and L. Tarquinio, 2014: Tropical and extratropical cyclone damages under climate change. Climatic Change, 127, 227241, https://doi.org/10.1007/s10584-014-1255-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011a: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689710, https://doi.org/10.1175/2010MWR3488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011b: Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model. Geophys. Res. Lett., 38, L04805,, https://doi.org/10.1029/2010GL046297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011c: Assessing the uncertainty in tropical cyclone simulations in NCAR’s Community Atmosphere Model. J. Adv. Model. Earth Syst., 3, M08002, https://doi.org/10.1029/2011MS000076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001,, https://doi.org/10.1029/2011MS000099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. D. Doyle, and X. Hong, 2016: Examining tropical cyclone–Kelvin wave interactions using adjoint diagnostics. Mon. Wea. Rev., 144, 44214439, https://doi.org/10.1175/MWR-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robbins, M. W., R. B. Lund, C. M. Gallagher, and Q. Lu, 2011: Changepoints in the North Atlantic tropical cyclone record. J. Amer. Stat. Assoc., 106, 8999, https://doi.org/10.1198/jasa.2011.ap10023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn, 1989: Design and analysis of computer experiments. Stat. Sci., 4, 409423, https://doi.org/10.1214/ss/1177012413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanso, B., and C. Forest, 2009: Statistical calibration of climate system properties. J. Roy. Stat. Soc., 58, 485503, https://doi.org/10.1111/j.1467-9876.2009.00669.x.

    • Search Google Scholar
    • Export Citation
  • Sanso, B., C. Forest, and D. Zantedeschi, 2008: Inferring climate system properties using a computer model. Bayesian Anal., 3, 162.

  • Saunders, M. A., and A. S. Lea, 2008: Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451, 557560, https://doi.org/10.1038/nature06422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobol, I. M., 1993: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp., 1, 407414.

  • Sobol, I. M., 2005: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates Math. Comput. Simul., 55, 271280, https://doi.org/10.1016/S0378-4754(00)00270-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strounine, K., S. Kravtsov, D. Kondrashov, and M. Ghil, 2010: Reduced models of atmospheric low-frequency variability: Parameter estimation and comparative performance. Physica D, 239, 145166, https://doi.org/10.1016/j.physd.2009.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokmakian, R., P. Challenor, and Y. Andrianakis, 2012: On the use of emulators with extreme and highly nonlinear geophysical simulators. J. Atmos. Oceanic Technol., 29, 17041715, https://doi.org/10.1175/JTECH-D-11-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648, https://doi.org/10.1175/2007MWR2070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Tushaus, S. A., D. J. Posselt, M. M. Miglietta, R. Rotunno, and L. Delle Monache, 2015: Bayesian exploration of multivariate orographic precipitation sensitivity for moist stable and neutral flows. Mon. Wea. Rev., 143, 44594475, https://doi.org/10.1175/MWR-D-15-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, https://doi.org/10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Merwe, R., T. K. Leen, Z. Lu, S. Frolov, and A. M. Baptista, 2007: Fast neural network surrogates for very high dimensional physics-based models in computational oceanography. Neural Networks, 20, 462478, https://doi.org/10.1016/j.neunet.2007.04.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2010: Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, https://doi.org/10.1175/2010MWR3315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J., and Coauthors, 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, https://doi.org/10.1175/BAMS-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, B., D. Higdon, J. Gattiker, L. Moore, M. McKay, and S. Keller-McNulty, 2006: Combining experimental data and computer simulations, with an application to flyer plate experiments. Bayesian Anal., 1, 765792, https://doi.org/10.1214/06-BA125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, https://doi.org/10.1002/2014MS000352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and P. A. Ullrich, 2017: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophys. Res. Lett., 44, 11411149, https://doi.org/10.1002/2016GL071606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Y. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 3859, https://doi.org/10.1175/MWR3278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2013: A sensitivity study of radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol parameters in the Community Atmosphere Model CAM5. Atmos. Chem. Phys., 13, 10 96910 987, https://doi.org/10.5194/acp-13-10969-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, https://doi.org/10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Živković, M., J. Louis, and J. Moncet, 1995: Sensitivity analysis of a radiation parameterization. J. Geophys. Res., 100, 13 82713 840, https://doi.org/10.1029/95JD00983.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 538 340 18
PDF Downloads 485 322 20

Application of Multivariate Sensitivity Analysis Techniques to AGCM-Simulated Tropical Cyclones

View More View Less
  • 1 University of California, Los Angeles, Los Angeles, California
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 Department of Statistics, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
  • | 5 Department of Statistics, University of Michigan, Ann Arbor, Michigan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This work demonstrates the use of Sobol’s sensitivity analysis framework to examine multivariate input–output relationships in dynamical systems. The methodology allows simultaneous exploration of the effect of changes in multiple inputs, and accommodates nonlinear interaction effects among parameters in a computationally affordable way. The concept is illustrated via computation of the sensitivities of atmospheric general circulation model (AGCM)-simulated tropical cyclones to changes in model initial conditions. Specifically, Sobol’s variance-based sensitivity analysis is used to examine the response of cyclone intensity, cloud radiative forcing, cloud content, and precipitation rate to changes in initial conditions in an idealized AGCM-simulated tropical cyclone (TC). Control factors of interest include the following: initial vortex size and intensity, environmental sea surface temperature, vertical lapse rate, and midlevel relative humidity. The sensitivity analysis demonstrates systematic increases in TC intensity with increasing sea surface temperature and atmospheric temperature lapse rates, consistent with many previous studies. However, there are nonlinear interactions among control factors that affect the response of the precipitation rate, cloud content, and radiative forcing. In addition, sensitivities to control factors differ significantly when the model is run at different resolution, and coarse-resolution simulations are unable to produce a realistic TC. The results demonstrate the effectiveness of a quantitative sensitivity analysis framework for the exploration of dynamic system responses to perturbations, and have implications for the generation of ensembles.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Derek J. Posselt, derek.posselt@jpl.nasa.gov

Abstract

This work demonstrates the use of Sobol’s sensitivity analysis framework to examine multivariate input–output relationships in dynamical systems. The methodology allows simultaneous exploration of the effect of changes in multiple inputs, and accommodates nonlinear interaction effects among parameters in a computationally affordable way. The concept is illustrated via computation of the sensitivities of atmospheric general circulation model (AGCM)-simulated tropical cyclones to changes in model initial conditions. Specifically, Sobol’s variance-based sensitivity analysis is used to examine the response of cyclone intensity, cloud radiative forcing, cloud content, and precipitation rate to changes in initial conditions in an idealized AGCM-simulated tropical cyclone (TC). Control factors of interest include the following: initial vortex size and intensity, environmental sea surface temperature, vertical lapse rate, and midlevel relative humidity. The sensitivity analysis demonstrates systematic increases in TC intensity with increasing sea surface temperature and atmospheric temperature lapse rates, consistent with many previous studies. However, there are nonlinear interactions among control factors that affect the response of the precipitation rate, cloud content, and radiative forcing. In addition, sensitivities to control factors differ significantly when the model is run at different resolution, and coarse-resolution simulations are unable to produce a realistic TC. The results demonstrate the effectiveness of a quantitative sensitivity analysis framework for the exploration of dynamic system responses to perturbations, and have implications for the generation of ensembles.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Derek J. Posselt, derek.posselt@jpl.nasa.gov
Save