• Alcott, T. I., and W. J. Steenburgh, 2013: Orographic influences on a Great Salt Lake–effect snowstorm. Mon. Wea. Rev., 141, 24322450, https://doi.org/10.1175/MWR-D-12-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alestalo, M., and H. Savijärvi, 1985: Mesoscale circulations in a hydrostatic model: Coastal convergence and orographic lifting. Tellus, 37A, 156162, https://doi.org/10.1111/j.1600-0870.1985.tb00277.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., 1970: Stability of a plane parallel flow with variable vertical shear and unstable stratification. J. Meteor. Soc. Japan, 48, 129139, https://doi.org/10.2151/jmsj1965.48.2_129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T., 1972: Thermal instability of a shear flow turning the direction with height. J. Meteor. Soc. Japan, 50, 525532, https://doi.org/10.2151/jmsj1965.50.6_525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The eta model, gravity waves, and quasigeostrophic diagnostics. Bull. Amer. Meteor. Soc., 77, 519528, https://doi.org/10.1175/1520-0477(1996)077<0519:ESSDIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd, G. P., R. A. Anstett, J. E. Heim, and D. M. Usinski, 1991: Mobile sounding observations of lake-effect snowbands in western and central New York. Mon. Wea. Rev., 119, 23232332, https://doi.org/10.1175/1520-0493(1991)119<2323:MSOOLE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, L. S., and W. J. Steenburgh, 2017: The OWLeS IOP2b lake-effect snowstorm: Mechanisms contributing to the Tug Hill precipitation maximum. Mon. Wea. Rev., 145, 24612478, https://doi.org/10.1175/MWR-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. S., and R. R. Braham, 1991: Observational study of a convective internal boundary layer over Lake Michigan. J. Atmos. Sci., 48, 22652279, https://doi.org/10.1175/1520-0469(1991)048<2265:OSOACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF Model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrick, R., H. D. Reeves, and S. Zhong, 2015: The dependence of QPF on the choice of boundary- and surface-layer parameterization for a lake-effect snowstorm. J. Appl. Meteor. Climatol., 54, 11771190, https://doi.org/10.1175/JAMC-D-14-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H., T. Kato, M. Yoshizaki, and A. Adachi, 2005: Numerical simulation of the quasi- stationary snowband observed over the southern coastal area of the Sea of Japan on 16 January 2001. J. Meteor. Soc. Japan, 83, 551576, https://doi.org/10.2151/jmsj.83.551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eito, H., M. Murakami, C. Muroi, T. Kato, S. Hayashi, H. Kuroiwa, and M. Yoshizaki, 2010: The structure and formation mechanism of transversal cloud bands associated with the Japan-Sea polar-airmass convergence zone. J. Meteor. Soc. Japan, 88, 625648, https://doi.org/10.2151/jmsj.2010-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, A. W., and J. J. Johnson, 2004: Hydroclimatic analysis of snowfall trends associated with the North American Great Lakes. J. Hydrometeor., 5, 471486, https://doi.org/10.1175/1525-7541(2004)005<0471:HAOSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., K. Tsuboki, S. Satoh, and G. Wakahama, 1992: Three-dimensional radar echo structure of a snow band formed on the lee side of a mountain. J. Meteor. Soc. Japan, 70, 1124, https://doi.org/10.2151/jmsj1965.70.1_11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harimaya, T., and M. Satol, 1992: The riming proportion in snow particles falling on coastal areas. J. Meteor. Soc. Japan, 70, 5765, https://doi.org/10.2151/jmsj1965.70.1_57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harimaya, T., and N. Kanemura, 1995: Comparison of the riming growth of snow particles between coastal and inland areas. J. Meteor. Soc. Japan, 73, 2536, https://doi.org/10.2151/jmsj1965.73.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hozumi, K., and C. Magono, 1984: The cloud structure of convergent cloud bands over the Japan Sea in winter monsoon period. J. Meteor. Soc. Japan, 62, 522533, https://doi.org/10.2151/jmsj1965.62.3_522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García- Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsumata, M., H. Uyeda, and K. Kikuchi, 1998: Characteristics of a cloud band off the west coast of Hokkaido Island as determined from AVHRR/NOAA, SSM/I and radar data. J. Meteor. Soc. Japan, 76, 169189, https://doi.org/10.2151/jmsj1965.76.2_169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, H., M. Hara, T. Yoshikane, N. N. Ishizaki, F. Uno, H. Hatsushika, and F. Kimura, 2013: Altitude dependency of future snow cover changes over central Japan evaluated by a regional climate model. J. Geophys. Res. Atmos., 118, 12 44412 457, https://doi.org/10.1002/2013JD020429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1982: A single Doppler radar study of horizontal-roll convection in a lake-effect snow storm. J. Atmos. Sci., 39, 15211531, https://doi.org/10.1175/1520-0469(1982)039<1521:ASDRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, https://doi.org/10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., S. Azumane, M. Murakami, and T. Taniguchi, 1987: Precipitating snow clouds during winter monsoon seasons influenced by topography of the Shakotan Peninsula, Hokkaido Island, Japan (SHAROP). Environ. Sci. Hokkaido, 10, 109128.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., 1993: Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteor., 63, 293315, https://doi.org/10.1007/BF00710463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and Coauthors, 2017: The Ontario Winter Lake-effect Systems (OWLeS) field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Amer. Meteor. Soc., 98, 315332, https://doi.org/10.1175/BAMS-D-15-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laird, N. F., J. Desrochers, and M. Payer, 2009: Climatology of lake-effect precipitation events over Lake Champlain. J. Appl. Meteor. Climatol., 48, 232250, https://doi.org/10.1175/2008JAMC1923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., K. Kikuchi, T. Kimura, S. Tazawa, and T. Kasai, 1966: A study on the snowfall in the winter monsoon season in Hokkaido with special reference to low land snowfall. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 287308.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015a: Impact of microphysics parameterizations on simulations of the 27 October 2010 Great Salt Lake–effect snowstorm. Wea. Forecasting, 30, 136152, https://doi.org/10.1175/WAF-D-14-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015b: Capabilities and limitations of convection- permitting WRF simulations of lake-effect systems over the Great Salt Lake. Wea. Forecasting, 30, 17111731, https://doi.org/10.1175/WAF-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, L. S. Campbell, P. V. Veals, and W. J. Steenburgh, 2015: The evolution of lake-effect convection during landfall and orographic uplift as observed by profiling radars. Mon. Wea. Rev., 143, 44224442, https://doi.org/10.1175/MWR-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, Y., 1986: Aspect ratios of longitudinal rolls and convection cells observed during cold air outbreaks. J. Atmos. Sci., 43, 2639, https://doi.org/10.1175/1520-0469(1986)043<0026:AROLRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. L. Clark, and W. D. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 4362, https://doi.org/10.2151/jmsj1965.72.1_43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., Y. Yamada, T. Matsuo, K. Iwanami, J. D. Marwitz, and G. Gordon, 2003: The precipitation process in convective cells embedded in deep snow bands over the Sea of Japan. J. Meteor. Soc. Japan, 81, 515531, https://doi.org/10.2151/jmsj.81.515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, M., 1991: Further numerical study on the formation of the convergent cloud band over the Japan Sea in winter. J. Meteor. Soc. Japan, 69, 419428, https://doi.org/10.2151/jmsj1965.69.3_419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., and T. Endoh, 1995: Observation of snowfall and airflow over a low mountain barrier. J. Meteor. Soc. Japan, 73, 183199, https://doi.org/10.2151/jmsj1965.73.2_183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakai, S., M. Maki, and T. Yagi, 1990: Doppler radar observation of orographic modification of snow clouds- A case of enhanced snowfall. Report of the National Research Institute for Earth Science and Disaster Prevention, 45, 116.

    • Search Google Scholar
    • Export Citation
  • Nakai, S., K. Iwanami, R. Misumi, S. Park, M. Shimizu, and T. Kobayashi, 2003: Relation between snow-cloud mode and snowfall distribution observed in central Niigata prefecture. Report of the National Research Institute for Earth Science and Disaster Prevention, 64, 917.

    • Search Google Scholar
    • Export Citation
  • Nakai, S., K. Iwanami, R. Misumi, S. Park, and T. Kobayashi, 2005: A classification of snow clouds by Doppler radar observations at Nagaoka, Japan. SOLA, 1, 161164, https://doi.org/10.2151/sola.2005-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP/NWS/NOAA/U.S. Department of Commerce, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. NCAR–UCAR Research Data Archive at Computational and Information Systems Laboratory, accessed 25 March 2017, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310321, https://doi.org/10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., V. Bennington, and S. Vavrus, 2015: Dynamically downscaled projections of lake-effect snow in the Great Lakes basin. J. Climate, 28, 16611684, https://doi.org/10.1175/JCLI-D-14-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohigashi, T., and K. Tsuboki, 2007: Shift and intensification processes of the Japan-Sea polar-airmass convergence zone associated with the passage of a mid-tropospheric cold core. J. Meteor. Soc. Japan, 85, 633662, https://doi.org/10.2151/jmsj.85.633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohtake, H., M. Kawashima, and Y. Fujiyoshi, 2009: The formation mechanism of a thick cloud band over the northern part of the Sea of Japan during cold air outbreaks. J. Meteor. Soc. Japan, 87, 289306, https://doi.org/10.2151/jmsj.87.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and D. T. Dawson, 2013: The dependence of QPF on the choice of microphysical parameterization for lake-effect snowstorms. J. Appl. Meteor. Climatol., 52, 363377, https://doi.org/10.1175/JAMC-D-12-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, https://doi.org/10.1175/2007JAS2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1997: Radar for Meteorologists. 3rd ed. Rinehart Publications, 428 pp.

  • Saito, K., M. Murakami, T. Matsuo, and H. Mizuno, 1996: Sensitivity experiments on the orographic snowfall over the mountainous region of northern Japan. J. Meteor. Soc. Japan, 74, 797813, https://doi.org/10.2151/jmsj1965.74.6_797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for Weather Research and Forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, J., 2014: Secrets of the Greatest Snow on Earth. Utah State University Press, 186 pp.

  • Steenburgh, W. J., and L. S. Campbell, 2017: The OWLeS IOP2b lake-effect snowstorm: Shoreline geometry and the mesoscale forcing of precipitation. Mon. Wea. Rev., 145, 24212436, https://doi.org/10.1175/MWR-D-16-0460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 2009: A users’ guide to RIP version 4: A program for visualizing mesoscale model output. UCAR, accessed 22 September 2017, http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm.

  • Tachibana, Y., 1995: A statistical study of the snowfall distribution on the Japan Sea side of Hokkaido and its relation to synoptic-scale and meso-scale environments. J. Meteor. Soc. Japan, 73, 697715, https://doi.org/10.2151/jmsj1965.73.3_697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., Y. Fujiyoshi, and G. Wakahama, 1989: Doppler radar observation of convergence band cloud formed on the west coast of Hokkaido Island. II: Cold frontal type. J. Meteor. Soc. Japan, 67, 985999, https://doi.org/10.2151/jmsj1965.67.6_985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, K., and T. Fujita, 1967: A satellite meteorological study of evaporation and cloud formation over the western Pacific under the influence of the winter monsoon. J. Meteor. Soc. Japan, 45, 232250, https://doi.org/10.2151/jmsj1965.45.3_232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, Y., M. Murakami, H. Mizuno, M. Maki, S. Nakai, and K. Iwanami, 2010: Kinematic and thermodynamical structures of longitudinal-mode snow bands over the Sea of Japan during cold-air outbreaks. Part I: Snow bands in large vertical shear environment in the band-transverse direction. J. Meteor. Soc. Japan, 88, 673718, https://doi.org/10.2151/jmsj.2010-404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, S., O. Abe, S. Nakai, and A. Sato, 2011: Recent fluctuations of meteorological and snow conditions in Japanese mountains. Ann. Glaciol., 52, 209215, https://doi.org/10.3189/172756411797252266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshihara, H., M. Kawashima, K. I. Arai, J. Inoue, and Y. Fujiyoshi, 2004: Doppler radar study on the successive development of snowbands at a convergence line near the coastal region of Hokuriku district. J. Meteor. Soc. Japan, 82, 10571079, https://doi.org/10.2151/jmsj.2004.1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 431 250 17
PDF Downloads 391 245 17

Influences of Orography and Coastal Geometry on a Transverse-Mode Sea-Effect Snowstorm over Hokkaido Island, Japan

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 2 Meteorological Research Institute, Japan Meteorological Agency, Ibaraki, Japan
  • | 3 Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Sea-effect snowstorms generated over the Sea of Japan produce consistent and often heavy snowfall throughout the winter season, impacting downstream communities in northern and central Japan. Here, we use observations and Weather Research and Forecasting (WRF) Model simulations to examine the precipitation distribution produced by transverse-mode sea-effect snowbands that interacted with the mountainous terrain circumscribing Ishikari Bay, Hokkaido Island, Japan, on 12 January 2014. The bands observed here were horizontal convective rolls aligned normal to the mean flow and were ~10 km wide and up to ~100 km long. The bands approached Ishikari Bay at intervals of ~10–16 min, intensifying as they progressed through a quasi-stationary, elongated enhancement region that paralleled the Shakotan Peninsula and extended into the Ishikari plain. Hydrometeor advection, through an ascent region over the northeast slope of the Shakotan Peninsula, and along clockwise-turning trajectories steered by the boundary layer directional shear, contributed to sustained precipitation enhancement along a curve in the elongated enhancement region near the entrance to Ishikari Bay. Downstream, orographic flow deflection by the coastal mountains, likely accentuated by thermal and roughness gradients along the Shakotan Peninsula’s shoreline, produced convergence and ascent along the elongated enhancement region. This study demonstrates the impact of downstream topography on sea-effect snowstorms and has implications for improving the prediction of snowfall in this and other lake- and sea-effect regions.

Current affiliation: Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leah S. Campbell, l1campbell@ucsd.edu

Abstract

Sea-effect snowstorms generated over the Sea of Japan produce consistent and often heavy snowfall throughout the winter season, impacting downstream communities in northern and central Japan. Here, we use observations and Weather Research and Forecasting (WRF) Model simulations to examine the precipitation distribution produced by transverse-mode sea-effect snowbands that interacted with the mountainous terrain circumscribing Ishikari Bay, Hokkaido Island, Japan, on 12 January 2014. The bands observed here were horizontal convective rolls aligned normal to the mean flow and were ~10 km wide and up to ~100 km long. The bands approached Ishikari Bay at intervals of ~10–16 min, intensifying as they progressed through a quasi-stationary, elongated enhancement region that paralleled the Shakotan Peninsula and extended into the Ishikari plain. Hydrometeor advection, through an ascent region over the northeast slope of the Shakotan Peninsula, and along clockwise-turning trajectories steered by the boundary layer directional shear, contributed to sustained precipitation enhancement along a curve in the elongated enhancement region near the entrance to Ishikari Bay. Downstream, orographic flow deflection by the coastal mountains, likely accentuated by thermal and roughness gradients along the Shakotan Peninsula’s shoreline, produced convergence and ascent along the elongated enhancement region. This study demonstrates the impact of downstream topography on sea-effect snowstorms and has implications for improving the prediction of snowfall in this and other lake- and sea-effect regions.

Current affiliation: Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leah S. Campbell, l1campbell@ucsd.edu
Save