Potential of Voronoi Diagram for the Conserved Remapping of Precipitation

Ki-Hwan Kim Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

Search for other papers by Ki-Hwan Kim in
Current site
Google Scholar
PubMed
Close
,
Eun-Hee Lee Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

Search for other papers by Eun-Hee Lee in
Current site
Google Scholar
PubMed
Close
, and
Song-You Hong Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea

Search for other papers by Song-You Hong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study considers a remapping algorithm between irregularly distributed observations and grid points based on Voronoi diagrams and examines its potential for verification of precipitation forecasts. We propose a new remapping method using Voronoi diagrams to apply conservative area-weighted remapping on grid data to station points, describing a representative area for each station point. Conservative remapping is applied to interpolate daily precipitation data between grid and station points over South Korea. The proposed method shows significant differences from bilinear interpolation, which has been widely used in modeling communities, for local maximum and mean in a given domain. It is also shown that different interpolation methods have an impact on verification results of precipitation forecast from a numerical weather prediction model against station observations. It is suggested that the proposed method has potential to be used for verifying precipitation forecasts at in situ observation points, with its conservativeness and capability to be applied in any remapping direction between grids and stations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eun-Hee Lee, eh.lee@kiaps.org

Abstract

This study considers a remapping algorithm between irregularly distributed observations and grid points based on Voronoi diagrams and examines its potential for verification of precipitation forecasts. We propose a new remapping method using Voronoi diagrams to apply conservative area-weighted remapping on grid data to station points, describing a representative area for each station point. Conservative remapping is applied to interpolate daily precipitation data between grid and station points over South Korea. The proposed method shows significant differences from bilinear interpolation, which has been widely used in modeling communities, for local maximum and mean in a given domain. It is also shown that different interpolation methods have an impact on verification results of precipitation forecast from a numerical weather prediction model against station observations. It is suggested that the proposed method has potential to be used for verifying precipitation forecasts at in situ observation points, with its conservativeness and capability to be applied in any remapping direction between grids and stations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eun-Hee Lee, eh.lee@kiaps.org
Save
  • Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aurenhammer, F., 1991: Voronoi diagrams—A survey of a fundamental geometric data structure. ACM Comput. Surv., 23, 345405, https://doi.org/10.1145/116873.116880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and J. S. Kain, 2006: Sensitivity of several performance measures to displacement error, bias, and event frequency. Wea. Forecasting, 21, 636648, https://doi.org/10.1175/WAF933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, M., A. K. Tyagi, J.-U. Kreft, and W. Alt, 2010: Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. Bull. Math. Biol., 72, 16961731, https://doi.org/10.1007/s11538-009-9498-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherubini, T., A. Ghelli, and F. Lalaurette, 2002: Verification of precipitation forecasts over the Alpine region using a high-density observing network. Wea. Forecasting, 17, 238249, https://doi.org/10.1175/1520-0434(2002)017<0238:VOPFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52 (3), 291307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirichlet, G. L., 1850: Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine Angew. Math., 40, 209, https://doi.org/10.1515/crll.1850.40.209.

    • Search Google Scholar
    • Export Citation
  • Doty, B., 1995: The Grid Analysis and Display System v1.5.1.12. Tech Rep., 145 pp., ftp://www.funceme.br/modelagem/echam46/mar2013-2/GrADS_doc_1_5_1.pdf.

  • Du, J., S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 24272459, https://doi.org/10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and J. W. Kodis, 1987: Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations. SIAM J. Sci. Statist. Comput., 8, 305321, https://doi.org/10.1137/0908037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84, 481492, https://doi.org/10.1175/BAMS-84-4-481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 2000: Quantitative precipitation forecasting in the UK. J. Hydrol., 239, 286305, https://doi.org/10.1016/S0022-1694(00)00354-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci., in press.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, J., and S.-Y. Hong, 2014: Quantitative forecast experiment of a heavy rainfall event over Korea in a global model: Horizontal resolution versus lead time issues. Meteor. Atmos. Phys., 124, 113127, https://doi.org/10.1007/s00703-014-0312-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kritsikis, E., M. Aechtner, Y. Meurdesoif, and T. Dubos, 2017: Conservative interpolation between general spherical meshes. Geosci. Model Dev., 10, 425431, https://doi.org/10.5194/gmd-10-425-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and E. E. Ebert, 2000: Verification of quantitative precipitation forecasts from operational numerical weather prediction models over Australia. Wea. Forecasting, 15, 103121, https://doi.org/10.1175/1520-0434(2000)015<0103:VOQPFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1996: Improvements in quantitative precipitation forecasting with the Eta regional model at the National Centers for Environmental Prediction: The 48-km upgrade. Bull. Amer. Meteor. Soc., 77, 26372650, https://doi.org/10.1175/1520-0477(1996)077<2637:IIQPFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelides, S., 2008: Precipitation: Advances in Measurement, Estimation and Prediction. Springer, 540 pp.

    • Crossref
    • Export Citation
  • Na, H.-S., C.-N. Lee, and O. Cheong, 2002: Voronoi diagrams on the sphere. Comput. Geom., 23, 183194, https://doi.org/10.1016/S0925-7721(02)00077-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10, 498511, https://doi.org/10.1175/1520-0434(1995)010<0498:EOYOQP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., P. Nurmi, and E. E. Ebert, 2008: Overview of methods for the verification of quantitative precipitation forecasts. Precipitation: Advances in Measurement, Estimation and Prediction, S. C. Michaelides, Ed., Springer, 418–450.

  • SciPy, 2017: SciPy reference guide v0.19.1. SciPy.org, accessed 12 March 2015, https://docs.scipy.org/doc/scipy/reference/.

  • Thiessen, A. H., 1911: Precipitation averages for large areas. Mon. Wea. Rev., 39, 10821089, https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tustison, B., D. Harris, and E. Foufoula-Georgiou, 2001: Scale issues in verification of precipitation forecasts. J. Geophys. Res., 106, 11 77511 784, https://doi.org/10.1029/2001JD900066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., P. H. Lauritzen, and C. Jablonowski, 2009: Geometrically Exact Conservative Remapping (GECoRe): Regular latitude–longitude and cubed-sphere grids. Mon. Wea. Rev., 137, 17211741, https://doi.org/10.1175/2008MWR2817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voronoi, G., 1908: Nouvelles applications des paramètres continus à la théorie de formes quadratiques. J. Reine Angew. Math., 134, 198.

  • Wigner, E., and F. Seitz, 1933: On the constitution of metallic sodium. Phys. Rev., 43, 804, https://doi.org/10.1103/PhysRev.43.804.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1279 526 42
PDF Downloads 825 153 2