• Antonelli, M., and R. Rotunno, 2007: Large-eddy simulation of the onset of the sea breeze. J. Atmos. Sci., 64, 44454457, https://doi.org/10.1175/2007JAS2261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and A. L. M. Grant, 1997: Non-local mixing of momentum in the convective boundary layer. Bound.-Layer Meteor., 84, 122, https://doi.org/10.1023/A:1000388830859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catalano, F., and C.-H. Moeng, 2010: Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Bound.-Layer Meteor., 137, 4975, https://doi.org/10.1007/s10546-010-9518-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux. J. Atmos. Sci., 63, 11791199, https://doi.org/10.1175/JAS3696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couvreux, F., F. Hourdin, and C. Rio, 2010: Resolved versus parametrized boundary-layer plumes. Part I: A parametrization oriented conditional sampling in large-eddy simulations. Bound.-Layer Meteor., 134, 441458, https://doi.org/10.1007/s10546-009-9456-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the counter-gradient vertical heat flux. J. Geophys. Res., 77, 59005904, https://doi.org/10.1029/JC077i030p05900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1985: Sub-grid-scale turbulence modeling. Advances in Geophysics, Vol. 28, Academic Press, 337–343, https://doi.org/10.1016/S0065-2687(08)60193-4.

    • Crossref
    • Export Citation
  • Deardorff, J. W., G. E. Willis, and B. H. Stockton, 1980: Laboratory studies of the entrainment zone of a convective mixed layer. J. Fluid Mech., 100, 4164, https://doi.org/10.1017/S0022112080001000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quart. J. Roy. Meteor. Soc., 141, 30063017, https://doi.org/10.1002/qj.2585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenhut, G. K., and S. J. S. Khalsa, 1982: Updraft and downdraft events in the atmospheric boundary layer over the equatorial Pacific Ocean. J. Atmos. Sci., 39, 18031818, https://doi.org/10.1175/1520-0469(1982)039<1803:UADEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., R. S. Plant, T. H. M. Stein, R. J. Hogan, J. C. Nicol, H. W. Lean, C. Halliwell, and P. A. Clark, 2015: Mixing-length controls on high-resolution simulations of convective storms. Quart. J. Roy. Meteor. Soc., 141, 272284, https://doi.org/10.1002/qj.2356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellsten, A., and S. Zilitinkevich, 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Bound.-Layer Meteor., 149, 323353, https://doi.org/10.1007/s10546-013-9854-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and C.-H. Moeng, 1991: Eddy diffusivity and counter gradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901698, https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., 2016: Representation of the grey zone of turbulence in the atmospheric boundary layer. Adv. Sci. Res., 13, 6367, https://doi.org/10.5194/asr-13-63-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, https://doi.org/10.1175/JAS-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., H. Niino, and M. Nakanishi, 2014: Horizontal turbulent diffusion in a convective mixed layer. J. Fluid Mech., 758, 553564, https://doi.org/10.1017/jfm.2014.545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of Mellor–Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, https://doi.org/10.1007/s10546-015-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. Williamson, 2011: The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Lecture Notes in Computational Science and Engineering, Vol. 80, Springer, 381–493.

    • Crossref
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NOAA/NWS/NCEP Office Note 437, 61 pp.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, https://doi.org/10.1175/2007MWR2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M., and J. Teixeira, 2018: A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer. J. Atmos. Sci., 75, 675689, https://doi.org/10.1175/JAS-D-16-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langhans, W., J. Schmidli, and C. Schär, 2012: Mesoscale impacts of explicit numerical diffusion in a convection-permitting model. Mon. Wea. Rev., 140, 226244, https://doi.org/10.1175/2011MWR3650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., F. Chen, M. Tewari, J. Dudhia, B. Geerts, Q. Miao, R. L. Coulter, and R. L. Grossman, 2010: Simulating the IHOP_2002 fair-weather CBL with the WRF-ARW–Noah modeling system. Part II: Structures from a few kilometers to100 km across. Mon. Wea. Rev., 138, 745764, https://doi.org/10.1175/2009MWR3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1974: Model of the height variation of the turbulent kinetic energy budget in the unstable planetary boundary layer. J. Atmos. Sci., 31, 465474, https://doi.org/10.1175/1520-0469(1974)031<0465:MOTHVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and P. L. Stephens, 1980: The role of thermals in the convective boundary layer. Bound.-Layer Meteor., 19, 509532, https://doi.org/10.1007/BF00122351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, https://doi.org/10.3402/tellusa.v14i2.9537.

  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, Yorktown Heights, NY, Thomas J. Watson Research Center, IBM, 195–210.

  • Machado, L. A., and J.-P. Chaboureau, 2015: Effect of turbulence parameterization on assessment of cloud organization. Mon. Wea. Rev., 143, 32463262, https://doi.org/10.1175/MWR-D-14-00393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1973: Analytic prediction of the properties of stratified planetary surface layers. J. Atmos. Sci., 30, 10611069, https://doi.org/10.1175/1520-0469(1973)030<1061:APOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, and M. J. Iacono, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of PBL using the WRF model. Mon. Wea. Rev., 135, 22952311, https://doi.org/10.1175/MWR3406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., J. Sauer, R. Linn, and B. Kosović, 2016: Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows. J. Atmos. Sci., 73, 26032614, https://doi.org/10.1175/JAS-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada Level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada Level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W.-G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parodi, A., and S. Tanelli, 2010: Influence of turbulence parameterizations on high-resolution numerical modeling of tropical convection observed during the TC4 field campaign. J. Geophys. Res., 115, D00J14, https://doi.org/10.1029/2009JD013302.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, https://doi.org/10.1175/JAS-D-11-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective planetary boundary layer. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, https://doi.org/10.1007/s10546-010-9583-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, https://doi.org/10.1175/JAS-D-12-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and J. Dudhia, 2016: Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: Turbulence statistics in the dry convective boundary layer. Mon. Wea. Rev., 144, 11611177, https://doi.org/10.1175/MWR-D-15-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976, https://doi.org/10.1175/MWR2839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1988: A formula for eddy viscosity in the presence of moist symmetric instability. J. Atmos. Sci., 45, 58, https://doi.org/10.1175/1520-0469(1988)045<0005:AFEVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., 2000: High-order monotonic numerical diffusion and smoothing. Mon. Wea. Rev., 128, 28532864, https://doi.org/10.1175/1520-0493(2000)128<2853:HOMNDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1103 692 63
PDF Downloads 1198 649 63

A Three-Dimensional Scale-Adaptive Turbulent Kinetic Energy Scheme in the WRF-ARW Model

View More View Less
  • 1 Shanghai Typhoon Institute, China Meteorological Administration, and Innovative Center of Regional High Resolution NWP, Shanghai, China
  • | 2 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 Shanghai Typhoon Institute, China Meteorological Administration, and Innovative Center of Regional High Resolution NWP, Shanghai, China
  • | 4 NOAA/Earth System Research Laboratory, and
  • | 5 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing scheme is developed using the Advanced Research version of the Weather Research and Forecasting (WRF) Model (WRF-ARW) to address the gray-zone problem in the parameterization of subgrid turbulent mixing. The new scheme combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the conventionally separate treatment of the vertical and horizontal mixing. The new scheme is self-adaptive to the grid-size change between the large-eddy simulation (LES) and mesoscale limits. A series of dry convective boundary layer (CBL) idealized simulations are carried out to compare the performance of the new scheme and the conventional treatment of subgrid mixing to the WRF-ARW LES dataset. The importance of including the nonlocal component in the vertical buoyancy specification in the newly developed general TKE-based scheme is illustrated in the comparison. The improvements of the new scheme with the conventional treatment of subgrid mixing across the gray-zone model resolutions are demonstrated through the partitioning of the total vertical flux profiles. Results from real-case simulations show the feasibility of using the new scheme in the WRF Model in lieu of the conventional treatment of subgrid mixing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xu Zhang, zhangx@typhoon.org.cn

Abstract

A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing scheme is developed using the Advanced Research version of the Weather Research and Forecasting (WRF) Model (WRF-ARW) to address the gray-zone problem in the parameterization of subgrid turbulent mixing. The new scheme combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the conventionally separate treatment of the vertical and horizontal mixing. The new scheme is self-adaptive to the grid-size change between the large-eddy simulation (LES) and mesoscale limits. A series of dry convective boundary layer (CBL) idealized simulations are carried out to compare the performance of the new scheme and the conventional treatment of subgrid mixing to the WRF-ARW LES dataset. The importance of including the nonlocal component in the vertical buoyancy specification in the newly developed general TKE-based scheme is illustrated in the comparison. The improvements of the new scheme with the conventional treatment of subgrid mixing across the gray-zone model resolutions are demonstrated through the partitioning of the total vertical flux profiles. Results from real-case simulations show the feasibility of using the new scheme in the WRF Model in lieu of the conventional treatment of subgrid mixing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xu Zhang, zhangx@typhoon.org.cn
Save