• Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, https://doi.org/10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., 2003a: Phase-correcting data assimilation and application to storm-scale numerical weather prediction. Part I: Method description and simulation testing. Mon. Wea. Rev., 131, 480492, https://doi.org/10.1175/1520-0493(2003)131<0480:PCDAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., 2003b: Phase-correcting data assimilation and application to storm-scale numerical weather prediction. Part II: Application to a severe storm outbreak. Mon. Wea. Rev., 131, 493507, https://doi.org/10.1175/1520-0493(2003)131<0493:PCDAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., 2012: Verification of RUC 0–1-h forecasts and SPC mesoscale analyses using VORTEX2 soundings. Wea. Forecasting, 27, 667683, https://doi.org/10.1175/WAF-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF Model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and A. Shapiro, 2015: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part I: Storm- and tornado-scale numerical forecasts. Mon. Wea. Rev., 143, 22412265, https://doi.org/10.1175/MWR-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grassotti, C., H. Iskenderian, and R. N. Hoffman, 1999: Calibration and alignment. J. Appl. Meteor., 38, 677695, https://doi.org/10.1175/1520-0450(1999)038<0677:CAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and C. Grassotti, 1996: A technique for assimilating SSM/I observations of marine atmospheric storms: Tests with ECMWF analyses. J. Appl. Meteor., 35, 11771188, https://doi.org/10.1175/1520-0450(1996)035<1177:ATFASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., Z. Liu, J.-F. Louis, and C. Grassoti, 1995: Distortion representation of forecast errors. Mon. Wea. Rev., 123, 27582770, https://doi.org/10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., C.-S. Liou, T.-C. Yeh, Y.-R. Guo, D.-S. Chen, K.-N. Huang, C.-T. Terng, and J.-H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 32983315, https://doi.org/10.1175/2010MWR3275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. Stensrud, L. Wicker, P. Minnis, and R. Palikonda, 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165194, https://doi.org/10.1175/MWR-D-14-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF Model. Mon. Wea. Rev., 135, 38083824, https://doi.org/10.1175/2007MWR2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmiller, G. S., H. B. Bluestein, P. J. Neiman, F. M. Ralph, and W. F. Feltz, 2001: Wind structure in a supercell thunderstorm as measured by a UHF wind profiler. Mon. Wea. Rev., 129, 19681986, https://doi.org/10.1175/1520-0493(2001)129<1968:WSIAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 15191535, https://doi.org/10.1175/2010MWR3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., B. Woods, T. Auligné, and R. N. Hoffman, 2014: Application of feature calibration and alignment to high-resolution analysis: Examples using observations sensitive to cloud and water vapor. Mon. Wea. Rev., 142, 686702, https://doi.org/10.1175/MWR-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., B. Woods, R. N. Hoffman, and T. Auligné, 2015: Correcting for position errors in variational data assimilation. Mon. Wea. Rev., 143, 13681381, https://doi.org/10.1175/MWR-D-14-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polak, E., and G. Ribière, 1969: Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis—Modélisation Mathématique et Analyse Numérique, 3, 3543, http://eudml.org/doc/193115.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Y., and G. Zha, 2010: Improvement of the WENO scheme smoothness estimator. Int. J. Numer. Methods Fluids, 64, 653675, https://doi.org/10.1002/fld.2168.

    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 2003: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn., 17, 107118, https://doi.org/10.1080/1061856031000104851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast System. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratman, D. R., and K. A. Brewster, 2017: Sensitivities of 1-km forecasts of 24 May 2011 tornadic supercells to microphysics parameterizations. Mon. Wea. Rev., 145, 26972721, https://doi.org/10.1175/MWR-D-16-0282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Supinie, T. A., N. Yussouf, Y. Jung, M. Xue, J. Cheng, and S. Wang, 2017: Comparison of the analyses and forecasts of a tornadic supercell storm from assimilating phased-array radar and WSR-88D observations. Wea. Forecasting, 32, 13791401, https://doi.org/10.1175/WAF-D-16-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501524, https://doi.org/10.1175/WAF-D-14-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, T. E., L. J. Wicker, X. Wang, and C. Potvin, 2015: A comparison between the local ensemble transform Kalman filter and the ensemble square root filter for the assimilation of radar data in convective-scale models. Quart. J. Roy. Meteor. Soc., 141, 11631176, https://doi.org/10.1002/qj.2423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble Kalman filter analyses and forecasts of a severe mesoscale convective system using different choices of microphysics schemes. Mon. Wea. Rev., 142, 32433263, https://doi.org/10.1175/MWR-D-13-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Y. Jung, and G. Zhang, 2007: Error modeling of simulated reflectivity observations for ensemble Kalman filter assimilation of convective storms. Geophys. Res. Lett., 34, L10802, https://doi.org/10.1029/2007GL029945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Hu, and A. D. Schenkman, 2014: Numerical prediction of the 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D data. Wea. Forecasting, 29, 3962, https://doi.org/10.1175/WAF-D-13-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 121 13
PDF Downloads 285 226 7

Correcting Storm Displacement Errors in Ensembles Using the Feature Alignment Technique (FAT)

View More View Less
  • 1 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 NOAA/OAR/National Severe Storms Laboratory, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A goal of Warn-on-Forecast (WoF) is to develop forecasting systems that produce accurate analyses and forecasts of severe weather to be utilized in operational warning settings. Recent WoF-related studies have indicated the need to alleviate storm displacement errors in both analyses and forecasts. A potential solution to reduce these errors is the feature alignment technique (FAT), which mitigates displacement errors between observations and model fields while satisfying constraints. This study merges the FAT with a local ensemble transform Kalman filter (LETKF) and uses observing system simulation experiments (OSSEs) to vet the FAT as a potential alleviator of forecast errors arising from storm displacement errors. An idealized truth run of a supercell on a 250-m grid is used to generate pseudoradar observations, which are assimilated onto a 2-km grid using a 50-member ensemble to produce analyses and forecasts of the supercell. The FAT uses composite reflectivity to generate a 2D field of displacement vectors that is used to align the model variables with the observations prior to each analysis cycle. The FAT is tested by displacing the initial model background fields from the observations or modifying the environmental wind profile to create a storm motion bias in the forecast cycles. The FAT–LETKF performance is evaluated and compared to that of the LETKF alone. The FAT substantially reduces errors in storm intensity, location, and structure during data assimilation and subsequent forecasts. These supercell OSSEs provide the foundation for future experiments with real data and more complex events.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Derek R. Stratman, derek.stratman@noaa.gov

Abstract

A goal of Warn-on-Forecast (WoF) is to develop forecasting systems that produce accurate analyses and forecasts of severe weather to be utilized in operational warning settings. Recent WoF-related studies have indicated the need to alleviate storm displacement errors in both analyses and forecasts. A potential solution to reduce these errors is the feature alignment technique (FAT), which mitigates displacement errors between observations and model fields while satisfying constraints. This study merges the FAT with a local ensemble transform Kalman filter (LETKF) and uses observing system simulation experiments (OSSEs) to vet the FAT as a potential alleviator of forecast errors arising from storm displacement errors. An idealized truth run of a supercell on a 250-m grid is used to generate pseudoradar observations, which are assimilated onto a 2-km grid using a 50-member ensemble to produce analyses and forecasts of the supercell. The FAT uses composite reflectivity to generate a 2D field of displacement vectors that is used to align the model variables with the observations prior to each analysis cycle. The FAT is tested by displacing the initial model background fields from the observations or modifying the environmental wind profile to create a storm motion bias in the forecast cycles. The FAT–LETKF performance is evaluated and compared to that of the LETKF alone. The FAT substantially reduces errors in storm intensity, location, and structure during data assimilation and subsequent forecasts. These supercell OSSEs provide the foundation for future experiments with real data and more complex events.

Current affiliation: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Derek R. Stratman, derek.stratman@noaa.gov
Save