Microphysical Properties and Radar Polarimetric Features within a Warm Front

S. Ch. Keppas Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by S. Ch. Keppas in
Current site
Google Scholar
PubMed
Close
,
J. Crosier Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, and National Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom

Search for other papers by J. Crosier in
Current site
Google Scholar
PubMed
Close
,
T. W. Choularton Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by T. W. Choularton in
Current site
Google Scholar
PubMed
Close
, and
K. N. Bower Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by K. N. Bower in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 21 January 2009, the warm front of an extensive low pressure system affected U.K. weather. In this work, macroscopic and microphysical characteristics of this warm front are investigated using in situ (optical array probes, temperatures sensors, and radiosondes) and S-band polarimetric radar data from the Aerosol Properties, Processes and Influences on the Earth’s Climate–Clouds project. The warm front was associated with a warm conveyor belt, a zone of wind speeds of up to 26 m s−1, which played a key role in the formation of extensive mixed-phase cloud mass by ascending significant liquid water (LWC; ~0.22 g m−3) at a level ~3 km and creating an ideal environment at temperatures ~ −5°C for ice multiplication. Then, “generating cells,” which formed in the unstable and sheared layer above the warm conveyor belt, influenced the structure of the stratiform cloud layer, dividing it into two types of elongated and slanted ice fall streaks: one depicted by large ZDR values and the other by large ZH values. The different polarimetric characteristics of these ice fall streaks reveal their different microphysical properties, such as the ice habit, concentration, and size. We investigate their evolution, which was affected by the warm conveyor belt, and their impact on the surface precipitation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Crosier, jonathan.crosier@manchester.ac.uk

Abstract

On 21 January 2009, the warm front of an extensive low pressure system affected U.K. weather. In this work, macroscopic and microphysical characteristics of this warm front are investigated using in situ (optical array probes, temperatures sensors, and radiosondes) and S-band polarimetric radar data from the Aerosol Properties, Processes and Influences on the Earth’s Climate–Clouds project. The warm front was associated with a warm conveyor belt, a zone of wind speeds of up to 26 m s−1, which played a key role in the formation of extensive mixed-phase cloud mass by ascending significant liquid water (LWC; ~0.22 g m−3) at a level ~3 km and creating an ideal environment at temperatures ~ −5°C for ice multiplication. Then, “generating cells,” which formed in the unstable and sheared layer above the warm conveyor belt, influenced the structure of the stratiform cloud layer, dividing it into two types of elongated and slanted ice fall streaks: one depicted by large ZDR values and the other by large ZH values. The different polarimetric characteristics of these ice fall streaks reveal their different microphysical properties, such as the ice habit, concentration, and size. We investigate their evolution, which was affected by the warm conveyor belt, and their impact on the surface precipitation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Crosier, jonathan.crosier@manchester.ac.uk
Save
  • Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, https://doi.org/10.1175/JAMC-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bader, M. J., S. A. Clough, and G. P. Cox, 1987: Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc., 113, 491515, https://doi.org/10.1002/qj.49711347605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boodoo, S., D. Hudak, N. Donaldson, and M. Leduc, 2010: Application of dual-polarization radar melting-layer detection algorithm. J. Appl. Meteor. Climatol., 49, 17791793, https://doi.org/10.1175/2010JAMC2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553, https://doi.org/10.1175/JAM2155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1971: Structure of the atmosphere in the vicinity of large‐amplitude Kelvin‐Helmholtz billows. Quart. J. Roy. Meteor. Soc., 97, 283299, https://doi.org/10.1002/qj.49709741304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399, https://doi.org/10.1256/qj.02.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., G. W. Bryant, J. R. Starr, and D. N. Axford, 1973: Air motion within Kelvin-Helmholtz billows determined from simultaneous Doppler radar and aircraft measurements. Quart. J. Roy. Meteor. Soc., 99, 608618, https://doi.org/10.1002/qj.49709942203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D., and K. A. Browning, 1998: Use of wind-shear displays for Doppler radar data. Bull. Amer. Meteor. Soc., 79, 26852692, https://doi.org/10.1175/1520-0477(1998)079<2685:UOWSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and W. R. Cotton, 1988: The sensitivity of a simulated extratropical mesoscale convective system to longwave radiation and ice-phase microphysics. J. Atmos. Sci., 45, 38973910, https://doi.org/10.1175/1520-0469(1988)045<3897:TSOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choularton, T. W., J. Latham, and B. J. Mason, 1978: A possible mechanism of ice splinter production during riming. Nature, 274, 791792, https://doi.org/10.1038/274791a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choularton, T. W., D. J. Griggs, B. Y. Humood, and J. Latham, 1980: Laboratory studies of riming, and its relation to ice splinter production. Quart. J. Roy. Meteor. Soc., 106, 367374, https://doi.org/10.1002/qj.49710644809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, I., and Coauthors, 2012: Ice formation and development in aged, wintertime cumulus over the UK: Observations and modelling. Atmos. Chem. Phys., 12, 49634985, https://doi.org/10.5194/acp-12-4963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2011: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys., 11, 257273, https://doi.org/10.5194/acp-11-257-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2014: Microphysical properties of cold frontal rainbands. Quart. J. Roy. Meteor. Soc., 140, 12571268, https://doi.org/10.1002/qj.2206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dearden, C., G. Vaughan, T. Tsai, and J.-P. Chen, 2016: Exploring the diabatic role of ice microphysical processes in two North Atlantic summer cyclones. Mon. Wea. Rev., 144, 12491272, https://doi.org/10.1175/MWR-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, R. H., K. L. S. Gunn, and J. S. Marshall, 1957: Pattern in the vertical of snow generation. J. Meteor., 14, 95114, https://doi.org/10.1175/1520-0469(1957)014<0095:PITVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., D. S. Zrnić, and D. S. Sirmans, 1979: Doppler weather radar. Proc. IEEE, 67, 15221553, https://doi.org/10.1109/PROC.1979.11511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellis, S., and Coauthors, 2012: Towards the detection of aircraft icing conditions using operational dual-polarimetric radar. Seventh European Radar Conf. on Radar in Meteorology and Hydrology, Toulouse, France, Meteo-France, 6 pp., http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/ATM_352_ext_abs.pdf.

  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, https://doi.org/10.1175/JTECH1922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1940: The formation of the 0°C isothermal layer and fractocumulus under nimbostratus. Meteor. Z., 57, 4954.

  • Forbes, R. M., and P. A. Clark, 2003: Sensitivity of extratropical cyclone mesoscale structure to the parametrization of ice microphysical processes. Quart. J. Roy. Meteor. Soc., 129, 11231148, https://doi.org/10.1256/qj.01.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukao, S., and K. Hamazu, 2013: Radar for Meteorological and Atmospheric Observations. Springer Japan, 537 pp.

    • Crossref
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 11561166, https://doi.org/10.1175/JTECH1766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364, https://doi.org/10.1175/2007JAMC1634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godard, S., 1970: Propagation of centimeter and millimeter wavelengths through precipitation. IEEE Trans. Antennas Propag., 18, 530534, https://doi.org/10.1109/TAP.1970.1139727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., J. D. Eastment, and J. Tan, 1994: Self-consistent measurements of differential phase and differential reflectivity in rain. Proc. 1994 Int. Geoscience and Remote Sensing Symp., Pasadena, CA, IEEE, 369–371, https://doi.org/10.1109/IGARSS.1994.399128

    • Crossref
    • Export Citation
  • Griffin, E. M., T. J. Schuur, A. V. Ryzhkov, H. D. Reeves, and J. C. Picca, 2014: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013. Wea. Forecasting, 29, 12711294, https://doi.org/10.1175/WAF-D-14-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, https://doi.org/10.1002/qj.49709942003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and P. V. Hobbs, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm-frontal clouds. J. Atmos. Sci., 37, 597611, https://doi.org/10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. IV: Vertical air motions and microphysical structures of prefrontal surge clouds and cold-frontal clouds. J. Atmos. Sci., 38, 17711784, https://doi.org/10.1175/1520-0469(1981)038<1771:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651376, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 13481357, https://doi.org/10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57, 916938, https://doi.org/10.1175/1520-0469(2000)057<0916:CCTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., G.-J. van Zadelhoff, D. P. Donovan, F. Fabry, R. J. Hogan, and A. J. Illingworth, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part II: Evaluation and parameterizations of ensemble ice particle sedimentation velocities. J. Atmos. Sci., 64, 10681088, https://doi.org/10.1175/JAS3900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and R. J. Farber, 1972: Fragmentation of ice particles in clouds. J. Rech. Atmos., 6, 245258.

  • Hobbs, P. V., and J. D. Locatelli, 1978: Rainbands, precipitation cores and generating cells in a cyclonic storm. J. Atmos. Sci., 35, 230241, https://doi.org/10.1175/1520-0469(1978)035<0230:RPCAGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128, 451476, https://doi.org/10.1256/003590002321042054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2014: Cloud Dynamics. International Geophysics Series, Vol. 104, Academic Press, 432 pp.

  • Houze, R. A., Jr., J. D. Locatelli, and P. V. Hobbs, 1976: Dynamics and cloud microphysics of the rainbands in an occluded frontal system. J. Atmos. Sci., 33, 19211936, https://doi.org/10.1175/1520-0469(1976)033<1921:DACMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.1002/qj.49711347604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and R. E. Cottis, 1969: Fall velocities of plate‐like and columnar ice crystals. Quart. J. Roy. Meteor. Soc., 95, 703709, https://doi.org/10.1002/qj.49709540604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57, 21052117, https://doi.org/10.1175/1520-0469(2000)057<2105:CRSOMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1972: Measurement of falling velocity of individual snow crystals. J. Meteor. Soc. Japan, 50, 577584, https://doi.org/10.2151/jmsj1965.50.6_577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., R. M. Rauber, B. F. Jewett, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, https://doi.org/10.1175/2010JAMC2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keppas, S. Ch., J. Crosier, T. W. Choularton, and K. N. Bower, 2017: Ice lollies: An ice particle generated in supercooled conveyor belts. Geophys. Res. Lett., 44, 52225230, https://doi.org/10.1002/2017GL073441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258, https://doi.org/10.1007/978-1-935704-20-1_10.

    • Crossref
    • Export Citation
  • Knight, C. A., 1979: Observations of the morphology of melting snow. J. Atmos. Sci., 36, 11231130, https://doi.org/10.1175/1520-0469(1979)036<1123:OOTMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86103, https://doi.org/10.1175/1520-0450(1970)009<0086:TOAAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., 1961: The growth of snow crystals at low supersaturations. Philos. Mag., 6, 13631370, https://doi.org/10.1080/14786436108241231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, https://doi.org/10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koop, T., B. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614, https://doi.org/10.1038/35020537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, https://doi.org/10.5194/amt-3-1683-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langleben, M. P., 1956: The plan pattern of snow echoes at the generating level. J. Meteor., 13, 554560, https://doi.org/10.1175/1520-0469(1956)013<0554:TPPOSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., C. Dearden, T. W. Choularton, J. Crosier, and K. N. Bower, 2014: Observations of the origin and distribution of ice in cold, warm, and occluded frontal systems during the DIAMET campaign. Mon. Wea. Rev., 142, 42304255, https://doi.org/10.1175/MWR-D-13-00396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 2529, https://doi.org/10.1175/1520-0469(1953)010<0025:PTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., R. A. Houze, and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 2956, https://doi.org/10.1002/qj.49710644704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res. Atmos., 120, 12 64412 655, https://doi.org/10.1002/2015JD023884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, J. O. Pinto, and J. A. Curry, 2005: Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds. Geophys. Res. Lett., 32, L18801, https://doi.org/10.1029/2005GL023614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., and J. Hallett, 1974: Ice crystal concentration in cumulus clouds: Influence of the drop spectrum. Science, 186, 632634, https://doi.org/10.1126/science.186.4164.632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., Y. Yamada, T. Matsuo, H. Mizuno, and K. Morikawa, 1992: Microphysical structures of warm-frontal clouds. J. Meteor. Soc. Japan, 70, 877895, https://doi.org/10.2151/jmsj1965.70.5_877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, https://doi.org/10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oraltay, R. G., and J. Hallett, 2005: The melting layer: A laboratory investigation of ice particle melt and evaporation near 0°C. J. Appl. Meteor., 44, 206220, https://doi.org/10.1175/JAM2194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. E. Clothiaux, J. Verlinde, and K. Aydin, 2015: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol., 54, 13351351, https://doi.org/10.1175/JAMC-D-14-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and J. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, https://doi.org/10.1175/JCLI-D-13-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 20162038, https://doi.org/10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitertsev, A., and F. Yanovsky, 2011: Polarimetric method for remote predicting a zone of icing-in-flight in clouds and precipitation. 2011 Microwaves, Radar and Remote Sensing Symp. (MRRS), Kiev, Ukraine, IEEE, https://doi.org/10.1109/MRRS.2011.6053640.

    • Crossref
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, https://doi.org/10.1175/JAS-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, https://doi.org/10.1175/JAS-D-14-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and C. R. Williams, 2011: The accuracy of radar estimates of ice terminal fall speed from vertically pointing Doppler radar measurements. J. Appl. Meteor. Climatol., 50, 21202138, https://doi.org/10.1175/JAMC-D-10-05031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. J. Schlamp, 1975: A wind tunnel investigation on ice multiplication by freezing of waterdrops falling at terminal velocity in air. J. Geophys. Res., 80, 380386, https://doi.org/10.1029/JC080i003p00380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2015: The role of cloud-top generating cells and boundary layer circulations in the finescale radar structure of a winter cyclone over the Great Lakes. Mon. Wea. Rev., 143, 22912318, https://doi.org/10.1175/MWR-D-14-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. Giangrande, and D. Zrnić, 2002: Using multiparameter data to calibrate polarimetric weather radars in the presence of a partial beam blockage. 2002 Geoscience and Remote Sensing Symp., Toronto, Ontario, Canada, IEEE, https://doi.org/10.1109/IGARSS.2002.1026791.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., H. D. Reeves, T. J. Schuur, M. R. Kumjian, and D. S. Zrnić, 2011: Investigations of polarimetric radar signatures in winter storms and their relation to aircraft icing and freezing rain. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 197, https://ams.confex.com/ams/35Radar/webprogram/Paper191245.html.

  • Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteor. Climatol., 55, 17711787, https://doi.org/10.1175/JAMC-D-15-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, https://doi.org/10.1175/JAMC-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serke, D. J., M. K. Politovich, A. L. Reehorst, and A. Gaydos, 2008: The use of X-band radar to support the detection of in-flight icing hazards by the NASA Icing Remote Sensing System. Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, W. Feltz and J. Murray, Eds., International Society for Optics and Photonics (SPIE Proceedings, Vol. 7088), 70880E, https://doi.org/10.1117/12.795290.

    • Crossref
    • Export Citation
  • Smith, P. L., D. J. Musil, A. G. Detwiler, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38, 145155, https://doi.org/10.1175/1520-0450(1999)038<0145:OOMPPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stark, D., B. A. Colle, and S. E. Yuter, 2013: Observed microphysical evolution for two East Coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, https://doi.org/10.1175/MWR-D-12-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1984: Deep 0°C isothermal layers within precipitation bands over southern Ontario. J. Geophys. Res., 89, 25672572, https://doi.org/10.1029/JD089iD02p02567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 32273237, https://doi.org/10.1175/1520-0469(1984)041<3227:CTTMLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84, 18071826, https://doi.org/10.1175/BAMS-84-12-1807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., C. A. Lin, and R. E. Stewart, 1988: Mesoscale circulations forced by melting snow. Part I: Basic simulations and dynamics. J. Atmos. Sci., 45, 16291641, https://doi.org/10.1175/1520-0469(1988)045<1629:MCFBMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56, 35733592, https://doi.org/10.1175/1520-0469(1999)056<3573:MOTMLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., P. J. DeMott, O. Möhler, and T. F. Whale, 2015: Technical note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, https://doi.org/10.5194/acp-15-10263-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vardiman, L., 1978: The generation of secondary ice particles in clouds by crystal–crystal collision. J. Atmos. Sci., 35, 21682180, https://doi.org/10.1175/1520-0469(1978)035<2168:TGOSIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and B. L. Bosart, 2001: Airborne radar observations of a warm front during FASTEX. Mon. Wea. Rev., 129, 254274, https://doi.org/10.1175/1520-0493(2001)129<0254:AROOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wexler, R., and D. Atlas, 1959: Precipitation generating cells. J. Meteor., 16, 327332, https://doi.org/10.1175/1520-0469(1959)016<0327:PGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693, https://doi.org/10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3128 2643 115
PDF Downloads 530 71 4