• Arnaud, Y., M. Desbois, and J. Maizi, 1992: Automatic tracking and characterization of African convective systems on Meteosat pictures. J. Appl. Meteor., 31, 443453, https://doi.org/10.1175/1520-0450(1992)031<0443:ATACOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., M. Joshi, J. Putkonen, and D. W. Burbank, 2000: A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27, 36833686, https://doi.org/10.1029/2000GL011827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., C. Kummerow, and C. A. Morales, 2002: Differences between East and West Pacific rainfall systems. J. Climate, 15, 36593672, https://doi.org/10.1175/1520-0442(2002)015<3659:DBEAWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, https://doi.org/10.1175/2008JAMC1732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and L. D. Nelson, 1978: The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled. J. Atmos. Sci., 35, 23022314, https://doi.org/10.1175/1520-0469(1978)035<2302:TEORSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F. J., Y. F. Fu, P. Liu, and Y. J. Yang, 2016: Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR. Atmos. Res., 169, 113126, https://doi.org/10.1016/j.atmosres.2015.09.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. L., 1988: Life cycle effects of cloud clusters on the moisture distribution over the eastern Atlantic. J. Meteor. Soc. Japan, 66, 387391, https://doi.org/10.2151/jmsj1965.66.2_387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. L., Y. F. Fu, T. Xian, and X. Pan, 2017: Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat. Int. J. Climatol., 37, 40434052, https://doi.org/10.1002/joc.4992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H. R., 1977: Contributions of cumulus cloud life-cycle effects to the large-scale heat and moisture budget equations. J. Atmos. Sci., 34, 8797, https://doi.org/10.1175/1520-0469(1977)034<0087:COCCLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da, C., 2015: Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett., 6, 637646, https://doi.org/10.1080/2150704X.2015.1066522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013a: An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens., 51, 43024315, https://doi.org/10.1109/TGRS.2012.2227762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013b: Composite life cycle of tropical mesoscale convective systems from geostationary and low Earth orbit satellite observations: Method and sampling considerations. Quart. J. Roy. Meteor. Soc., 139, 941953, https://doi.org/10.1002/qj.2174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, B. L., 2004: Climatological validation of TRMM TMI and PR monthly rain products over Oklahoma. J. Appl. Meteor., 43, 519535, https://doi.org/10.1175/1520-0450(2004)043<0519:CVOTTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y. F., and G. S. Liu, 2001: The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data. J. Appl. Meteor., 40, 21302143, https://doi.org/10.1175/1520-0450(2001)040<2130:TVOTPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y. F., Y. H. Lin, G. S. Liu, and Q. Wang, 2003: Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci., 20, 511529, https://doi.org/10.1007/BF02915495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y. F., G. S. Liu, G. X. Wu, R. C. Yu, Y. P. Xu, Y. Wang, R. Li, and Q. Liu, 2006: Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett., 33, L05802, https://doi.org/10.1029/2005GL024713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Y. N. Takayabu, 2016: Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, https://doi.org/10.1175/JTECH-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashimoto, A., and T. Harimaya, 2005: Characteristics of raindrop size distribution dependent on the life stage of a convective precipitation cloud in the Baiu season. J. Meteor. Soc. Japan, 83, 641649, https://doi.org/10.2151/jmsj.83.641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1989: Research on clouds and precipitation: Past, present, and future. Part I. Bull. Amer. Meteor. Soc., 70, 282285, https://doi.org/10.1175/1520-0477-70.3.282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, L. M., 1959: The collision efficiency of small drops. Quart. J. Roy. Meteor. Soc., 85, 4450, https://doi.org/10.1002/qj.49708536305.

  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1981: Structures of atmospheric precipitation systems: A global survey. Radio Sci., 16, 671689, https://doi.org/10.1029/RS016i005p00671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, https://doi.org/10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and Coauthors, 2012: An overview of the precipitation retrieval algorithm for the dual-frequency precipitation radar (DPR) on the global precipitation measurement (GPM) mission’s core satellite. Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, H. Shimoda et al., Eds., International Society for Optics and Photonics (SPIE Proceedings, Vol. 8528), 85281C, https://doi.org/10.1117/12.977352.

    • Crossref
    • Export Citation
  • Inoue, T., and K. Aonashi, 2000: A comparison of cloud and rainfall information from instantaneous visible and infrared scanner and precipitation radar observations over a frontal zone in East Asia during June 1998. J. Appl. Meteor., 39, 22922301, https://doi.org/10.1175/1520-0450(2001)040<2292:ACOCAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, T., D. Vila, K. Rajendran, A. Hamada, X. Wu, and L. A. T. Machado, 2009: Life cycle of deep convective systems over the eastern tropical Pacific observed by TRMM and GOES-W. J. Meteor. Soc. Japan, 87A, 381391, https://doi.org/10.2151/jmsj.87A.381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kojima, M., and Coauthors, 2012: Dual-frequency precipitation radar (DPR) development on the global precipitation measurement (GPM) core observatory. Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, H. Shimoda et al., Eds., International Society for Optics and Photonics (SPIE Proceedings, Vol. 8528), 85281A, https://doi.org/10.1117/12.976823.

    • Crossref
    • Export Citation
  • Kondo, Y., A. Higuchi, and K. Nakamura, 2006: Small-scale cloud activity over the Maritime Continent and the western Pacific as revealed by satellite data. Mon. Wea. Rev., 134, 15811599, https://doi.org/10.1175/MWR3132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotsuki, S., K. Terasaki, and T. Miyoshi, 2014: GPM/DPR precipitation compared with a 3.5-km-resolution NICAM simulation. SOLA, 10, 204209, https://doi.org/10.2151/sola.2014-043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1948: The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteor., 5, 175192, https://doi.org/10.1175/1520-0469(1948)005<0175:TPORBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H.-T. Wu, 2011: Climatology and changes in tropical oceanic rainfall characteristics inferred from Tropical Rainfall Measuring Mission (TRMM) data (1998–2009). J. Geophys. Res., 116, D17111, https://doi.org/10.1029/2011JD015827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and G. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285, https://doi.org/10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and C. Schumacher, 2011: Thick anvils as viewed by the TRMM Precipitation Radar. J. Climate, 24, 17181735, https://doi.org/10.1175/2010JCLI3793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. T., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. T., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, https://doi.org/10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., C. Y. Li, Y. Wang, and Y. F. Fu, 2013: Climatic characteristics of convective and stratiform precipitation over the tropical and subtropical areas as derived from TRMM PR. Sci. China Earth Sci., 56, 375385, https://doi.org/10.1007/s11430-012-4474-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machado, L., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416, https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1972: The physics of the thunderstorm. Proc. Roy. Soc. London, 327A, 433, https://doi.org/10.1098/rspa.1972.0056.

  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2005: Variability in the characteristics of precipitation systems in the tropical Pacific. Part I: Spatial structure. J. Climate, 18, 823840, https://doi.org/10.1175/JCLI-3304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, https://doi.org/10.1002/qj.49712757208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, C. R., and V. Chandrasekar, 2006: A GPM dual-frequency retrieval algorithm: DSD profile-optimization method. J. Atmos. Oceanic Technol., 23, 13721383, https://doi.org/10.1175/JTECH1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295, https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1975: Electric charge life cycle in warm clouds. J. Atmos. Sci., 32, 123142, https://doi.org/10.1175/1520-0469(1975)032<0123:ECLCIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 17771791, https://doi.org/10.1175/2007JAMC1649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M., and R. A. Houze, 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519, https://doi.org/10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witte, M. K., P. Y. Chuang, and G. Feingold, 2014: On clocks and clouds. Atmos. Chem. Phys., 14, 67296738, https://doi.org/10.5194/acp-14-6729-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xian, T., and Y. F. Fu, 2015: Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements. J. Geophys. Res. Atmos., 120, 70067024, https://doi.org/10.1002/2014JD022633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and S. W. Nesbitt, 2014: Statistical properties of precipitation as observed by the TRMM precipitation radar. Geophys. Res. Lett., 41, 56365643, https://doi.org/10.1002/2014GL060683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, A. Q., Y. F. Fu, Y. L. Chen, G. S. Liu, and X. D. Zhang, 2018: Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations. Atmos. Res., 202, 1022, https://doi.org/10.1016/j.atmosres.2017.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62, 12691290, https://doi.org/10.1175/JAS3414.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 345 200 16
PDF Downloads 383 227 17

Life Cycle Effects on the Vertical Structure of Precipitation in East China Measured by Himawari-8 and GPM DPR

View More View Less
  • 1 School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

We identified precipitating systems from May to August 2016 using data from the Global Precipitation Measurement mission Dual-frequency Precipitation Radar instrument. Then, using this set of cases, Himawari-8 10.4-μm brightness temperature data from before and after each precipitation event were used to identify three life stages of clouds: a developing stage, a mature stage, and a dissipating stage. Using statistical analysis and two case studies, we show that the precipitating systems at different life stages of the clouds have different systematic properties, including the area of precipitation, the convective ratio, the rain-top height, and the brightness temperature. The developing systems had the largest convective ratio, whereas the dissipating systems had the largest area of precipitation. The life stage of the cloud also influenced the vertical structure of the precipitation. The microphysical processes within each stage were unique, leading to various properties of the droplets in precipitation. The developing systems had large, but sparse, droplets; the mature systems had large and dense droplets; and the dissipating systems had small and sparse droplets. Our results suggest that the different properties of precipitating systems in each life cycle stage of clouds are linked to the cloud water content and the upward motion of air.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yunfei Fu, fyf@ustc.edu.cn

Abstract

We identified precipitating systems from May to August 2016 using data from the Global Precipitation Measurement mission Dual-frequency Precipitation Radar instrument. Then, using this set of cases, Himawari-8 10.4-μm brightness temperature data from before and after each precipitation event were used to identify three life stages of clouds: a developing stage, a mature stage, and a dissipating stage. Using statistical analysis and two case studies, we show that the precipitating systems at different life stages of the clouds have different systematic properties, including the area of precipitation, the convective ratio, the rain-top height, and the brightness temperature. The developing systems had the largest convective ratio, whereas the dissipating systems had the largest area of precipitation. The life stage of the cloud also influenced the vertical structure of the precipitation. The microphysical processes within each stage were unique, leading to various properties of the droplets in precipitation. The developing systems had large, but sparse, droplets; the mature systems had large and dense droplets; and the dissipating systems had small and sparse droplets. Our results suggest that the different properties of precipitating systems in each life cycle stage of clouds are linked to the cloud water content and the upward motion of air.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yunfei Fu, fyf@ustc.edu.cn
Save