Terrain-Trapped Airflows and Orographic Rainfall along the Coast of Northern California. Part II: Horizontal and Vertical Structures Observed by a Scanning Doppler Radar

Raul A. Valenzuela Department of Atmospheric and Oceanic Sciences, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Raul A. Valenzuela in
Current site
Google Scholar
PubMed
Close
and
David E. Kingsmill Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by David E. Kingsmill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study documents the mean properties and variability of kinematic and precipitation structures associated with orographic precipitation along the coast of Northern California in the context of terrain-trapped airflows (TTAs). TTAs are defined as relatively narrow air masses that consistently flow in close proximity and approximately parallel to an orographic barrier. Seven land-falling winter storms are examined with observations from a scanning X-band Doppler radar deployed on the coast at Fort Ross, California. Additional information is provided by a 915-MHz wind-profiling radar, surface meteorology, a GPS receiver, and balloon soundings. The composite kinematic structure during TTA conditions exhibits a significant horizontal gradient of wind direction from the coast to approximately 50 km offshore and a low-level jet (LLJ) that surmounts a weaker airflow offshore corresponding to the TTA, with a zone of enhanced precipitation evident between ~5 and 25 km offshore and oriented nearly parallel to the coastline. Conversely, the composite kinematic structure during NO-TTA conditions exhibits a smaller offshore horizontal gradient of wind direction and precipitation structures are generally enhanced within km of the coastline. Interstorm variability analysis reveals significant variations in kinematic structures during both TTA and NO-TTA conditions, whereas significant variations in precipitation structures are only evident during TTA conditions. The interstorm analysis also illustrates more clearly how LLJ vertical structures evident during NO-TTA conditions exhibit ascent along the coast and over the coastal mountains, which is in contrast to TTA conditions where the ascent occurs offshore and over the TTA.

Current affiliation: Department of Geophysics and Center for Climate and Resilience Research, University of Chile, Santiago, Chile.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raul A. Valenzuela, raul.valenzuela@colorado.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-16-0484.1

Abstract

This study documents the mean properties and variability of kinematic and precipitation structures associated with orographic precipitation along the coast of Northern California in the context of terrain-trapped airflows (TTAs). TTAs are defined as relatively narrow air masses that consistently flow in close proximity and approximately parallel to an orographic barrier. Seven land-falling winter storms are examined with observations from a scanning X-band Doppler radar deployed on the coast at Fort Ross, California. Additional information is provided by a 915-MHz wind-profiling radar, surface meteorology, a GPS receiver, and balloon soundings. The composite kinematic structure during TTA conditions exhibits a significant horizontal gradient of wind direction from the coast to approximately 50 km offshore and a low-level jet (LLJ) that surmounts a weaker airflow offshore corresponding to the TTA, with a zone of enhanced precipitation evident between ~5 and 25 km offshore and oriented nearly parallel to the coastline. Conversely, the composite kinematic structure during NO-TTA conditions exhibits a smaller offshore horizontal gradient of wind direction and precipitation structures are generally enhanced within km of the coastline. Interstorm variability analysis reveals significant variations in kinematic structures during both TTA and NO-TTA conditions, whereas significant variations in precipitation structures are only evident during TTA conditions. The interstorm analysis also illustrates more clearly how LLJ vertical structures evident during NO-TTA conditions exhibit ascent along the coast and over the coastal mountains, which is in contrast to TTA conditions where the ascent occurs offshore and over the TTA.

Current affiliation: Department of Geophysics and Center for Climate and Resilience Research, University of Chile, Santiago, Chile.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Raul A. Valenzuela, raul.valenzuela@colorado.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-16-0484.1

Save
  • Arya, S. P., 1988: Introduction to Micrometeorology. 1st ed. Academic Press, 307 pp.

  • Businger, S., and Coauthors, 1996: The promise of GPS in atmospheric monitoring. Bull. Amer. Meteor. Soc., 77, 518, https://doi.org/10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Y. Lin, S. Medina, and B. F. Smull, 2008: Orographic modification of convection and flow kinematics by the Oregon coast range and Cascades during IMPROVE-2. Mon. Wea. Rev., 136, 38943916, https://doi.org/10.1175/2008MWR2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., 1997: The influence of mesoscale orography on a coastal jet and rainband. Mon. Wea. Rev., 125, 14651488, https://doi.org/10.1175/1520-0493(1997)125<1465:TIOMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158, https://doi.org/10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., D. A. Carter, and B. B. Balsley, 1988: A UHF wind profiler for the boundary layer: Brief description and initial results. J. Atmos. Oceanic Technol., 5, 432441, https://doi.org/10.1175/1520-0426(1988)005<0432:AUWPFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fenn, M., and Coauthors, 2010: Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. J. Environ. Manage., 91, 24042423, https://doi.org/10.1016/j.jenvman.2010.07.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., M. Falvey, and A. Montecinos, 2016: Orographic precipitation in coastal southern Chile: Mean distribution, temporal variability, and linear contribution. J. Hydrometeor., 17, 11851202, https://doi.org/10.1175/JHM-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., C. N. James, and S. Medina, 2001: Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999. Quart. J. Roy. Meteor. Soc., 127, 25372558, https://doi.org/10.1002/qj.49712757804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, C. N., and R. A. Houze Jr., 2005: Modification of precipitation by coastal orography in storms crossing Northern California. Mon. Wea. Rev., 133, 31103131, https://doi.org/10.1175/MWR3019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, B. J. Moore, M. Hughes, S. E. Yuter, and F. M. Ralph, 2013: Kinematic and thermodynamic structures of Sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in Northern California. Mon. Wea. Rev., 141, 20152036, https://doi.org/10.1175/MWR-D-12-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. O. G. Persson, S. Haimov, and M. D. Shupe, 2016: Mountain waves and orographic precipitation in a northern Colorado winter storm. Quart. J. Roy. Meteor. Soc., 142, 836853, https://doi.org/10.1002/qj.2685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D., and D. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, https://doi.org/10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loescher, K. A., G. S. Young, B. A. Colle, and N. S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437453, https://doi.org/10.1175/MWR3037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martner, B. E., K. A. Clark, S. Y. Matrosov, W. C. Campbell, and J. S. Gibson, 2001: NOAA/ETL’s polarization-upgraded x-band “HYDRO” radar. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 101–103.

  • Marwitz, J. D., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40, 12181227, https://doi.org/10.1175/1520-0469(1983)040<1218:TKOOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., S. Businger, M. D. Albright, and Z. A. Tucker, 1995: A windstorm in the lee of a gap in a coastal mountain barrier. Mon. Wea. Rev., 123, 315331, https://doi.org/10.1175/1520-0493(1995)123<0315:AWITLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., D. E. Kingsmill, B. E. Martner, and F. M. Ralph, 2005: The utility of x-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6, 248262, https://doi.org/10.1175/JHM424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., B. F. Smull, R. A. Houze Jr., and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598, https://doi.org/10.1175/JAS3554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. D. Parrish, J. S. Holloway, and D. L. Bartels, 2006: A multiwinter analysis of channeled flow through a prominent gap along the Northern California coast during CALJET and PACJET. Mon. Wea. Rev., 134, 18151841, https://doi.org/10.1175/MWR3148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with cosmic satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A water vapour flux tool for precipitation forecasting. Proc. Inst. Civil Eng. Water Manage., 162 (2), 8394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., E. M. Sukovich, F. M. Ralph, and M. Hughes, 2010: A seven-year wind profiler–based climatology of the windward barrier jet along California’s Northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233, https://doi.org/10.1175/2009MWR3170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925930, https://doi.org/10.1175/1520-0450(1982)021<0925:BWATSN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., L. O. Grant, W. R. Cotton, and D. C. Rogers, 1991: The effect of decoupled low-level flow on winter orographic clouds and precipitation in the Yampa River Valley. J. Appl. Meteor., 30, 368386, https://doi.org/10.1175/1520-0450(1991)030<0368:TEODLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003, https://doi.org/10.1175/1520-0469(1985)042<0977:UEOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2013: The emergence of weather-related test beds linking research and forecasting operations. Bull. Amer. Meteor. Soc., 94, 11871211, https://doi.org/10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., D. S. Wratt, R. D. Henderson, and W. R. Gray, 1997: Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study. J. Appl. Meteor., 36, 428442, https://doi.org/10.1175/1520-0450(1997)036<0428:FATDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, 1–41, https://doi.org/10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., I. Barstad, and L. Bonneau, 2005: Orographic precipitation and Oregon’s climate transition. J. Atmos. Sci., 62, 177191, https://doi.org/10.1175/JAS-3376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., R. E. Stewart, G. Thomson, and J. M. Thériault, 2013: Microphysical processes within winter orographic cloud and precipitation systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. D. Wekker, and B. J. Snyder, Eds., Springer, 345–408, https://doi.org/10.1007/978-94-007-4098-3_7.

    • Crossref
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meterology. 1st ed. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Thorne, J. H., J. A. Kennedy, J. F. Quinn, M. McCoy, T. Keeler-Wolf, and J. Menke, 2004: A vegetation map of Napa County using the manual of California vegetation classification and its comparison to other digital vegetation maps. Madrono, 51 (4), 343363.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105120, https://doi.org/10.1175/1520-0426(2000)017<0105:RDOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valenzuela, R. A., and D. E. Kingsmill, 2015: Orographic precipitation forcing along the coast of Northern California during a landfalling winter storm. Mon. Wea. Rev., 143, 35703590, https://doi.org/10.1175/MWR-D-14-00365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valenzuela, R. A., and D. E. Kingsmill, 2017: Terrain-trapped airflows and orographic rainfall along the coast of Northern California. Part I: Kinematic characterization using a wind profiling radar. Mon. Wea. Rev., 145, 29933008, https://doi.org/10.1175/MWR-D-16-0484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, B. L., D. B. Wuertz, D. C. Welsh, and R. McPeek, 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452464, https://doi.org/10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Wolfe, D. E., and S. I. Gutman, 2000: Developing an operational, surface-based, GPS, water vapor observing system for NOAA: Network design and results. J. Atmos. Oceanic Technol., 17, 426440, https://doi.org/10.1175/1520-0426(2000)017<0426:DAOSBG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and B. F. Smull, 2000: Airborne Doppler observations of a landfalling cold front upstream of steep coastal orography. Mon. Wea. Rev., 128, 15771603, https://doi.org/10.1175/1520-0493(2000)128<1577:ADOOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and Y.-H. Hsieh, 2009: Formation of the convective lines off the mountainous coast of Southeastern Taiwan: A case study of 3 January 2004. Mon. Wea. Rev., 137, 30723091, https://doi.org/10.1175/2009MWR2867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. A. Stark, J. A. Crouch, M. J. Payne, and B. A. Colle, 2011: The impact of varying environmental conditions on the spatial and temporal patterns of orographic precipitation over the Pacific Northwest near Portland, Oregon. J. Hydrometeor., 12, 329351, https://doi.org/10.1175/2010JHM1239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, https://doi.org/10.1029/94GL01710.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 513 60 3
PDF Downloads 206 43 1