WRF Hindcasts of Cold Front Passages over the ARM Eastern North Atlantic Site: A Sensitivity Study

Fayçal Lamraoui City College of the City University of New York, New York, New York

Search for other papers by Fayçal Lamraoui in
Current site
Google Scholar
PubMed
Close
,
James F. Booth City College of the City University of New York, New York, New York

Search for other papers by James F. Booth in
Current site
Google Scholar
PubMed
Close
, and
Catherine M. Naud Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Catherine M. Naud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study explores the ability of the Weather Research and Forecasting (WRF) Model to accurately reproduce the passage of extratropical cold fronts at the DOE ARM eastern North Atlantic (ENA) observation site on the Azores. An analysis of three case studies is performed in which the impact of the WRF domain size, position of the model boundary relative to the ENA site, grid spacing, and spectral nudging conditions are explored. The results from these case studies indicate that model biases in the timing and duration of cold front passages change with the distance between the model domain boundary and the ENA site. For these three cases, if the western model boundary is farther than 1500 km from the site, the front becomes too meridional and fails to reach the site, making 1000 or 1500 km the optimal distances. In contrast, integrations with small distances (e.g., 500 km) between the site and domain boundaries have inadequate spatial spinup (i.e., the domain is too small for the model to properly stabilize). For all three cases, regardless of domain size, the model has biases in its upper-level circulation that impact the position and timing of the front. However, this issue is most serious for 4000-km2 domains and larger. For these domains, prolonged spectral nudging can correct cold front biases. As such, this analysis provides a framework to optimize the WRF Model configuration necessary for a realistic hindcast of a cold front passage at a fixed location centered in a domain as large as computationally possible.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fayçal Lamraoui, faycal.lamraoui@gmail.com

Abstract

The present study explores the ability of the Weather Research and Forecasting (WRF) Model to accurately reproduce the passage of extratropical cold fronts at the DOE ARM eastern North Atlantic (ENA) observation site on the Azores. An analysis of three case studies is performed in which the impact of the WRF domain size, position of the model boundary relative to the ENA site, grid spacing, and spectral nudging conditions are explored. The results from these case studies indicate that model biases in the timing and duration of cold front passages change with the distance between the model domain boundary and the ENA site. For these three cases, if the western model boundary is farther than 1500 km from the site, the front becomes too meridional and fails to reach the site, making 1000 or 1500 km the optimal distances. In contrast, integrations with small distances (e.g., 500 km) between the site and domain boundaries have inadequate spatial spinup (i.e., the domain is too small for the model to properly stabilize). For all three cases, regardless of domain size, the model has biases in its upper-level circulation that impact the position and timing of the front. However, this issue is most serious for 4000-km2 domains and larger. For these domains, prolonged spectral nudging can correct cold front biases. As such, this analysis provides a framework to optimize the WRF Model configuration necessary for a realistic hindcast of a cold front passage at a fixed location centered in a domain as large as computationally possible.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fayçal Lamraoui, faycal.lamraoui@gmail.com
Save
  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, https://doi.org/10.1175/2008MWR2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ARM, 1993: Balloon-borne sounding system (SONDEWRPR), 2009–2017, eastern North Atlantic (ENA/GRW) Graciosa Island, Azores, Portugal (C1). Atmospheric Radiation Measurement (ARM) Climate Research Facility data archive, https://doi.org/10.5439/1150271.

    • Crossref
    • Export Citation
  • ARM, 2013: Surface meteorological instrumentation (MET), 2009–2010, 2013–2017, eastern North Atlantic (ENA/GRW) Graciosa Island, Azores, Portugal (C1). Atmospheric Radiation Measurement (ARM) Climate Research Facility data archive.

  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, https://doi.org/10.1175/JCLI-D-11-00702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, https://doi.org/10.1175/JCLI-D-13-00169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The epic 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967978, https://doi.org/10.1175/BAMS-85-7-967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 24832501, https://doi.org/10.1175/MWR-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., P. G. Duynkerke, and H. J. J. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421, https://doi.org/10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. Gettelman, R. B. Neale, R. Wood, P. J. Rasch, and H. Morrison, 2008: Midlatitude cyclone compositing to constrain climate model behavior using satellite observations. J. Climate, 21, 58875903, https://doi.org/10.1175/2008JCLI2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 63356352, https://doi.org/10.1029/98JD02072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, P., H. Shivappa, and S. Goud, 2012: Comparative analysis of the role of domain size, horizontal resolution and initial conditions in the simulation of tropical heavy rainfall events. Meteor. Appl., 19, 170178, https://doi.org/10.1002/met.253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, https://doi.org/10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jakob, C., 2010: Accelerating progress in global atmospheric model development through improved parameterization: Challenges, opportunities, and strategies. Bull. Amer. Meteor. Soc., 91, 869876, https://doi.org/10.1175/2009BAMS2898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. J. Dagostaro, V. E. Kousky, and R. J. Joyce, 2007: An examination of precipitation in observations and model forecasts during NAME with emphasis on the diurnal cycle. J. Climate, 20, 16801692, https://doi.org/10.1175/JCLI4084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanaros, K. B., I. Bhatti, L. A. McMurdie, and G. W. Petty, 1989: Identification of atmospheric fronts over the ocean with microwave measurements of water vapor and rain. Wea. Forecasting, 4, 449460, https://doi.org/10.1175/1520-0434(1989)004<0449:IOAFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., M. A. Shapiro, and R. Gelaro, 2002: Initial condition sensitivity and error growth in forecasts of the 25 January 2000 East Coast snowstorm. Mon. Wea. Rev., 130, 957974, https://doi.org/10.1175/1520-0493(2002)130<0957:ICSAEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991, https://doi.org/10.1175/2008JCLI1995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, https://doi.org/10.1029/2003JD004495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioche, G., O. Jourdan, M. Ceccaldi, and J. Delanoë, 2015: Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: A study based on spaceborne active remote sensing. Atmos. Chem. Phys., 15, 24452461, https://doi.org/10.5194/acp-15-2445-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution across warm fronts in CloudSat–CALIPSO data and a general circulation model. J. Climate, 23, 33973415, https://doi.org/10.1175/2010JCLI3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, https://doi.org/10.1175/JCLI-D-13-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2016: The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, J. G., S. P. Malinowski, and W. W. Grabowski, 2016: Resolution and domain-size sensitivity in implicit large-eddy simulation of the stratocumulus-topped boundary layer. J. Adv. Model. Earth Syst., 8, 885903, https://doi.org/10.1002/2015MS000572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J., and L. Zubair, 2010: The effect of grid spacing and domain size on the quality of ensemble regional climate downscaling over South Asia during the northeasterly monsoon. Mon. Wea. Rev., 138, 27802802, https://doi.org/10.1175/2010MWR3191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., and G. Tselioudis, 2015: Cloud regime variability over the Azores and its application to climate model evaluation. J. Climate, 28, 97079720, https://doi.org/10.1175/JCLI-D-15-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., P. Kollias, E. Luke, and R. Wood, 2012: Marine boundary layer cloud observations in the Azores. J. Climate, 25, 73817398, https://doi.org/10.1175/JCLI-D-11-00610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp., http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.

  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59, 32853301, https://doi.org/10.1175/1520-0469(2002)059<3285:EODSAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land-surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Treadon, R. E., and R. A. Petersen, 1993: Domain size sensitivity experiments using the NMC Eta model. Preprints, 13th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 176–177.

  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Stratum, B. J. H., and B. Stevens, 2015: The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation. J. Adv. Model. Earth Syst., 7, 423436, https://doi.org/10.1002/2014MS000370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapor. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992618, https://doi.org/10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764, https://doi.org/10.1175/JCLI3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., R. Vasic, Z. Janjic, F. Mesinger, and K. E. Mitchell, 2007: Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB Regional Climate Model. J. Climate, 20, 41724193, https://doi.org/10.1175/JCLI4239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., W. A. Brewer, and G. Feingold, 2013: Evaluation of modeled stratocumulus-capped boundary layer turbulence with shipborne data. J. Atmos. Sci., 70, 38953919, https://doi.org/10.1175/JAS-D-13-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 773 222 9
PDF Downloads 354 113 6