Improving Particle Filter Performance by Smoothing Observations

Gregor Robinson Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Gregor Robinson in
Current site
Google Scholar
PubMed
Close
,
Ian Grooms Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Ian Grooms in
Current site
Google Scholar
PubMed
Close
, and
William Kleiber Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado

Search for other papers by William Kleiber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article shows that increasing the observation variance at small scales can reduce the ensemble size required to avoid collapse in particle filtering of spatially extended dynamics and improve the resulting uncertainty quantification at large scales. Particle filter weights depend on how well ensemble members agree with observations, and collapse occurs when a few ensemble members receive most of the weight. Collapse causes catastrophic variance underestimation. Increasing small-scale variance in the observation error model reduces the incidence of collapse by de-emphasizing small-scale differences between the ensemble members and the observations. Doing so smooths the posterior mean, though it does not smooth the individual ensemble members. Two options for implementing the proposed observation error model are described. Taking a discretized elliptic differential operator as an observation error covariance matrix provides the desired property of a spectrum that grows in the approach to small scales. This choice also introduces structure exploitable by scalable computation techniques, including multigrid solvers and multiresolution approximations to the corresponding integral operator. Alternatively the observations can be smoothed and then assimilated under the assumption of independent errors, which is equivalent to assuming large errors at small scales. The method is demonstrated on a linear stochastic partial differential equation, where it significantly reduces the occurrence of particle filter collapse while maintaining accuracy. It also improves continuous ranked probability scores by as much as 25%, indicating that the weighted ensemble more accurately represents the true distribution. The method is compatible with other techniques for improving the performance of particle filters.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ian Grooms, ian.grooms@colorado.edu

Abstract

This article shows that increasing the observation variance at small scales can reduce the ensemble size required to avoid collapse in particle filtering of spatially extended dynamics and improve the resulting uncertainty quantification at large scales. Particle filter weights depend on how well ensemble members agree with observations, and collapse occurs when a few ensemble members receive most of the weight. Collapse causes catastrophic variance underestimation. Increasing small-scale variance in the observation error model reduces the incidence of collapse by de-emphasizing small-scale differences between the ensemble members and the observations. Doing so smooths the posterior mean, though it does not smooth the individual ensemble members. Two options for implementing the proposed observation error model are described. Taking a discretized elliptic differential operator as an observation error covariance matrix provides the desired property of a spectrum that grows in the approach to small scales. This choice also introduces structure exploitable by scalable computation techniques, including multigrid solvers and multiresolution approximations to the corresponding integral operator. Alternatively the observations can be smoothed and then assimilated under the assumption of independent errors, which is equivalent to assuming large errors at small scales. The method is demonstrated on a linear stochastic partial differential equation, where it significantly reduces the occurrence of particle filter collapse while maintaining accuracy. It also improves continuous ranked probability scores by as much as 25%, indicating that the weighted ensemble more accurately represents the true distribution. The method is compatible with other techniques for improving the performance of particle filters.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ian Grooms, ian.grooms@colorado.edu
Save
  • Acevedo, W., J. de Wiljes, and S. Reich, 2017: Second-order accurate ensemble transform particle filters. SIAM J. Sci. Comput., 39, A1834A1850, https://doi.org/10.1137/16M1095184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ades, M., and P. J. van Leeuwen, 2013: An exploration of the equivalent weights particle filter. Quart. J. Roy. Meteor. Soc., 139, 820840, https://doi.org/10.1002/qj.1995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ades, M., and P. J. van Leeuwen, 2015: The equivalent-weights particle filter in a high-dimensional system. Quart. J. Roy. Meteor. Soc., 141, 484503, https://doi.org/10.1002/qj.2370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agapiou, S., O. Papaspiliopoulos, D. Sanz-Alonso, and A. Stuart, 2017: Importance sampling: Intrinsic dimension and computational cost. Stat. Sci., 32, 405431, https://doi.org/10.1214/17-STS611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., P. Bickel, and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. Probability and Statistics: Essays in Honor of David A. Freedman, D. Nolan and T. Speed, Eds., Institute of Mathematical Statistics, 316–334, https://doi.org/10.1214/193940307000000518.

    • Crossref
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chorin, A. J., and X. Tu, 2009: Implicit sampling for particle filters. Proc. Natl. Acad. Sci. USA, 106, 17 24917 254, https://doi.org/10.1073/pnas.0909196106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chorin, A. J., and X. Tu, 2012: An iterative implementation of the implicit nonlinear filter. ESAIM:M2AN, 46, 535543, https://doi.org/10.1051/m2an/2011055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chorin, A. J., and M. Morzfeld, 2013: Conditions for successful data assimilation. J. Geophys. Res., 118, 11 52211 533, https://doi.org/10.1002/2013JD019838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chorin, A. J., M. Morzfeld, and X. Tu, 2010: Implicit particle filters for data assimilation. Commun. Appl. Math. Comput. Sci., 5, 221240, https://doi.org/10.2140/camcos.2010.5.221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chui, C., and G. Chen, 2009: Kalman Filtering: With Real-Time Applications. 4th ed. Springer, 230 pp., https://doi.org/10.1007/978-3-540-87849-0.

    • Crossref
    • Export Citation
  • Crisan, D., and A. Doucet, 2002: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process., 50, 736746, https://doi.org/10.1109/78.984773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doucet, A., and A. M. Johansen, 2011: A tutorial on particle filtering and smoothing: Fifteen years later. Oxford Handbook of Nonlinear Filtering, D. Crisan and B. Rozovskii, Eds., Oxford University Press, 656–704.

  • Doucet, A., S. Godsill, and C. Andrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 10, 197208, https://doi.org/10.1023/A:1008935410038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001: An introduction to sequential Monte Carlo methods. Sequential Monte Carlo Methods in Practice, Springer, 3–14, https://doi.org/10.1007/978-1-4757-3437-9_1.

    • Crossref
    • Export Citation
  • Feldmann, K., M. Scheuerer, and T. L. Thorarinsdottir, 2015: Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression. Mon. Wea. Rev., 143, 955971, https://doi.org/10.1175/MWR-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortin, V., M. Abaza, F. Anctil, and R. Turcotte, 2014: Why should ensemble spread match the rmse of the ensemble mean? J. Hydrometeor., 15, 17081713, https://doi.org/10.1175/JHM-D-14-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelfand, I., and N. Vilenkin, 1964: Generalized Functions. Vol. 4, Applications of Harmonic Analysis, AMS Chelsea Publishing, 384 pp.

  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, https://doi.org/10.1198/016214506000001437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, J. Baars, T. Gneiting, C. F. Mass, and E. Grimit, 2011a: Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging. Mon. Wea. Rev., 139, 26302649, https://doi.org/10.1175/2010MWR3511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, and T. Gneiting, 2011b: Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting. J. Amer. Stat. Assoc., 106, 12911303, https://doi.org/10.1198/jasa.2011.ap10433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindgren, F., H. Rue, and J. Lindström, 2011: An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. Roy. Stat. Soc., 73B, 423498, https://doi.org/10.1111/j.1467-9868.2011.00777.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and J. Harlim, 2012: Filtering Complex Turbulent Systems. Cambridge University Press, 368 pp.

  • Morzfeld, M., X. Tu, E. Atkins, and A. J. Chorin, 2012: A random map implementation of implicit filters. J. Comput. Phys., 231, 20492066, https://doi.org/10.1016/j.jcp.2011.11.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morzfeld, M., D. Hodyss, and C. Snyder, 2017: What the collapse of the ensemble Kalman filter tells us about particle filters. Tellus, 69A, 1283809, https://doi.org/10.1080/16000870.2017.1283809.

    • Search Google Scholar
    • Export Citation
  • Nystrom, N. A., M. J. Levine, R. Z. Roskies, and J. R. Scott, 2015: Bridges: A uniquely flexible HPC resource for new communities and data analytics. Proc. 2015 XSEDE Conf.: Scientific Advancements Enabled by Enhanced Cyberinfrastructure, St. Louis, MO, ACM, https://doi.org/10.1145/2792745.2792775.

    • Crossref
    • Export Citation
  • Okamoto, K., A. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 16031614, https://doi.org/10.1002/qj.2242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Øksendal, B., 2003: Stochastic Differential Equations: An Introduction with Applications. 6th ed. Springer, 379 pp., https://doi.org/10.1007/978-3-642-14394-6.

    • Crossref
    • Export Citation
  • Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Processes Geophys., 23, 391405, https://doi.org/10.5194/npg-23-391-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev., 144, 5976, https://doi.org/10.1175/MWR-D-15-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebeschini, P., and R. Van Handel, 2015: Can local particle filters beat the curse of dimensionality? Ann. Appl. Probab., 25, 28092866, https://doi.org/10.1214/14-AAP1061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reich, S., 2013: A nonparametric ensemble transform method for Bayesian inference. SIAM J. Sci. Comput., 35, A2013A2024, https://doi.org/10.1137/130907367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rue, H., and L. Held, 2005: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall Press, 280 pp.

    • Crossref
    • Export Citation
  • Scheuerer, M., and L. Büermann, 2014: Spatially adaptive post-processing of ensemble forecasts for temperature. J. Roy. Stat. Soc., 63C, 405422, https://doi.org/10.1111/rssc.12040.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 46294640, https://doi.org/10.1175/2008MWR2529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. Bengtsson, and M. Morzfeld, 2015: Performance bounds for particle filters using the optimal proposal. Mon. Wea. Rev., 143, 47504761, https://doi.org/10.1175/MWR-D-15-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Towns, J., and Coauthors, 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

  • van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 19911999, https://doi.org/10.1002/qj.699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaglom, A. M., 1987: Correlation Theory of Stationary and Related Random Functions. Springer, 526 pp.

    • Crossref
    • Export Citation
  • Zhu, Y., and Coauthors, 2016: All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Wea. Rev., 144, 47094735, https://doi.org/10.1175/MWR-D-15-0445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1197 304 25
PDF Downloads 1035 245 23