Thermodynamics of Pyrocumulus: A Conceptual Study

Kevin J. Tory Science and Innovation Group, Bureau of Meteorology, and
Bushfire and Natural Hazards Cooperative Research Centre, Melbourne, Victoria, Australia

Search for other papers by Kevin J. Tory in
Current site
Google Scholar
PubMed
Close
,
William Thurston Science and Innovation Group, Bureau of Meteorology, and
Bushfire and Natural Hazards Cooperative Research Centre, Melbourne, Victoria, Australia

Search for other papers by William Thurston in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey D. Kepert Science and Innovation Group, Bureau of Meteorology, and
Bushfire and Natural Hazards Cooperative Research Centre, Melbourne, Victoria, Australia

Search for other papers by Jeffrey D. Kepert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In favorable atmospheric conditions, fires can produce pyrocumulonimbus cloud (pyroCb) in the form of deep convective columns resembling conventional thunderstorms, which may be accompanied by strong inflow, dangerous downbursts, and lightning strikes that can produce dangerous changes in fire behavior. PyroCb formation conditions are not well understood and are difficult to forecast. This paper presents a theoretical study of the thermodynamics of fire plumes to better understand the influence of a range of factors on plume condensation. Plume gases are considered to be undiluted at the fire source and approach 100% dilution at the plume top (neutral buoyancy). Plume condensation height changes are considered for this full range of dilution and for a given set of factors that include environmental temperature and humidity, fire temperature, and fire-moisture-to-heat ratios. The condensation heights are calculated and plotted as saturation point (SP) curves on thermodynamic diagrams. The position and slope of the SP curves provide insight into how plume condensation is affected by the environment thermodynamics and ratios of fire heat to moisture production. Plume temperature traces from large-eddy model simulations added to the diagrams provide additional insight into plume condensation heights and plume buoyancy at condensation. SP curves added to a mixed layer lifting condensation level on standard thermodynamic diagrams can be used to identify the minimum plume condensation height and buoyancy required for deep, moist, free convection to develop, which will aid pyroCb prediction.

Current affiliation: Met Office, Exeter, United Kingdom.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Kevin J. Tory, k.tory@bom.gov.au

Abstract

In favorable atmospheric conditions, fires can produce pyrocumulonimbus cloud (pyroCb) in the form of deep convective columns resembling conventional thunderstorms, which may be accompanied by strong inflow, dangerous downbursts, and lightning strikes that can produce dangerous changes in fire behavior. PyroCb formation conditions are not well understood and are difficult to forecast. This paper presents a theoretical study of the thermodynamics of fire plumes to better understand the influence of a range of factors on plume condensation. Plume gases are considered to be undiluted at the fire source and approach 100% dilution at the plume top (neutral buoyancy). Plume condensation height changes are considered for this full range of dilution and for a given set of factors that include environmental temperature and humidity, fire temperature, and fire-moisture-to-heat ratios. The condensation heights are calculated and plotted as saturation point (SP) curves on thermodynamic diagrams. The position and slope of the SP curves provide insight into how plume condensation is affected by the environment thermodynamics and ratios of fire heat to moisture production. Plume temperature traces from large-eddy model simulations added to the diagrams provide additional insight into plume condensation heights and plume buoyancy at condensation. SP curves added to a mixed layer lifting condensation level on standard thermodynamic diagrams can be used to identify the minimum plume condensation height and buoyancy required for deep, moist, free convection to develop, which will aid pyroCb prediction.

Current affiliation: Met Office, Exeter, United Kingdom.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Kevin J. Tory, k.tory@bom.gov.au
Save
  • Banta, R. M., L. D. Olivier, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, 1992: Smoke-column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteor., 31, 13281349, https://doi.org/10.1175/1520-0450(1992)031<1328:SCOFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beebe, R. G., 1955: Types of airmasses in which tornadoes occur. Bull. Amer. Meteor. Soc., 36, 349350.

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briggs, G. A., 1975: Plume rise predictions. Lectures on Air Pollution and Environmental Impact Analyses, D. A. Haugen, Ed., Amer. Meteor. Soc., 59–111.

    • Crossref
    • Export Citation
  • Brown, A. R., S. H. Derbyshire, and P. J. Mason, 1994: Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quart. J. Roy. Meteor. Soc., 120, 14851512, https://doi.org/10.1002/qj.49712052004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., and Coauthors, 2007: Observing the dynamics of wildland grass fires: FireFlux—A field validation experiment. Bull. Amer. Meteor. Soc., 88, 13691382, https://doi.org/10.1175/BAMS-88-9-1369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, P., 2007: Idealized numerical simulations of the interactions between buoyant plumes and density currents. J. Atmos. Sci., 64, 21052115, https://doi.org/10.1175/JAS3947.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, P., and M. J. Reeder, 2009: Severe convective storms initiated by intense wildfires: Numerical simulations of pyro-convection and pyro-tornadogenesis. Geophys. Res. Lett., 36, L12812, https://doi.org/10.1029/2009GL039262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, P., and S. L. Goodrick, 2013: High-resolution numerical models for smoke transport in plumes from wildland fires. Remote Sensing and Modeling Applications to Wildland Fires, J. J. Qu et al., Eds., Springer, 67–79.

    • Crossref
    • Export Citation
  • Dowdy, A. J., M. D. Fromm, and N. McCarthy, 2017: Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J. Geophys. Res. Atmos., 122, 73427354, https://doi.org/10.1002/2017JD026577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 590 pp.

  • Finney, M. A., and S. S. McAllister, 2011: A review of fire interactions and mass fires. J. Combustion, 2011, 548328, https://doi.org/10.1155/2011/548328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., and R. Servranckx, 2003: Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett., 30, 1542, https://doi.org/10.1029/2002GL016820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., A. Tupper, D. Rosenfeld, R. Servranckx, and R. McRae, 2006: Violent pyro-convective storm devastates Australia’s capital and pollutes the stratosphere. Geophys. Res. Lett., 33, L05815, https://doi.org/10.1029/2005GL025161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., D. T. Lindsey, R. Servranckx, G. Yue, T. Trickl, R. Sica, P. Doucet, and S. Godin-Beekman, 2010: The untold story of pyrocumulonimbus. Bull. Amer. Meteor. Soc., 91, 11931210, https://doi.org/10.1175/2010BAMS3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., R. H. D. McRae, J. J. Sharples, and G. P. Kablick III, 2012: Pyrocumulonimbus pair in Wollemi and Blue Mountains national parks, 22 November 2006. Aust. Meteor. Oceanogr. J., 62, 117126, https://doi.org/10.22499/2.6203.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabbert, B., 2014: Norway: Rare winter brush fire burns numerous structures. WildFire Today, 28 January 2014, http://wildfiretoday.com/2014/01/28/norway-rare-winter-brush-fire-burns-numerous-structures/.

  • Goens, D. W., and P. L. Andrews, 1998: Weather and fire behavior factors related to the 1990 Dude Fire near Payson, AZ. Proc. Second Symp. on Fire and Forest Meteorology, Phoenix, AZ, Amer. Meteor. Soc., 153–158.

  • Gray, M. E. B., J. Petch, S. H. Derbyshire, A. R. Brown, A. P. Lock, H. A. Swann, and P. R. A. Brown, 2001: Version 2.3 of the Met Office large eddy model: Part II. Scientific documentation. Met Office (APR) Turbulence and Diffusion Rep. 276, 49 pp.

  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert Jr., D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 30613080, https://doi.org/10.1175/MWR-D-13-00361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koo, E., P. J. Pagni, D. R. Weise, and J. P. Woycheese, 2010: Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire, 19, 818843, https://doi.org/10.1071/WF07119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., and C. B. Clements, 2016: Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys., 16, 40054022, https://doi.org/10.5194/acp-16-4005-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., and C. B. Clements, 2017: The mean and turbulent properties of a wildfire convective plume. J. Appl. Meteor. Climatol., 56, 22892299, https://doi.org/10.1175/JAMC-D-16-0384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luderer, G., J. Trentmann, and M. O. Andreae, 2009: A new look at the role of fire-released moisture on the dynamics of atmospheric pyro-convection. Int. J. Wildland Fire, 18, 554562, https://doi.org/10.1071/WF07035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McRae, R. H. D., J. J. Sharples, and M. Fromm, 2015: Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci., 15, 417428, https://doi.org/10.5194/nhess-15-417-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, R. M., D. M. O’Brien, and S. K. Campbell, 2006: Characteristics and radiative impact of the aerosol generated by the Canberra firestorm of January 2003. J. Geophys. Res., 111, D02204, https://doi.org/10.1029/2005JD006304.

    • Search Google Scholar
    • Export Citation
  • Peace, M., L. W. McCaw, and G. A. Mills, 2012: Meteorological dynamics in a fire environment; A case study of the Layman prescribed burn in western Australia. Aust. Meteor. Oceanogr. J., 62, 127142, https://doi.org/10.22499/2.6203.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, M., T. Mattner, G. A. Mills, J. D. Kepert, and L. McCaw, 2015a: Fire-modified meteorology in a coupled fire–atmosphere model. J. Appl. Meteor. Climatol., 54, 704720, https://doi.org/10.1175/JAMC-D-14-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, M., L. W. McCaw, J. D. Kepert, G. A. Mills, and T. Mattner, 2015b: WRF and SFIRE simulations of the Layman fuel reduction burn. Aust. Meteor. Oceanogr. J., 65, 302317, https://doi.org/10.22499/2.6503.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, M., T. Mattner, G. A. Mills, J. D. Kepert, and L. McCaw, 2016: Coupled fire–atmosphere simulations of the Rocky River fire using WRF-SFIRE. J. Appl. Meteor. Climatol., 55, 11511168, https://doi.org/10.1175/JAMC-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., E. J. Hyer, J. R. Campbell, M. D. Fromm, J. W. Hair, C. F. Butler, and M. A. Fenn, 2015: The 2013 Rim Fire: Implications for predicting extreme fire spread, pyroconvection, and smoke emissions. Bull. Amer. Meteor. Soc., 96, 229247, https://doi.org/10.1175/BAMS-D-14-00060.1.

    • Crossref
    • Export Citation
  • Peterson, D. A., E. J. Hyer, J. R. Campbell, J. E. Solbrig, and M. D. Fromm, 2017: A conceptual model for development of intense pyrocumulus in western North America. Mon. Wea. Rev., 145, 22352255, https://doi.org/10.1175/MWR-D-16-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, B. E., 2005: The role of released moisture in the atmospheric dynamics associated with wildland fires. Int. J. Wildland Fire, 14, 7784, https://doi.org/10.1071/WF04045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, B. E., and J. R. Hernandez, 2017: Downdraft outflows: Climatological potential to influence fire behaviour. Int. J. Wildland Fire, 26, 685692, https://doi.org/10.1071/WF17035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. D. Fromm, J. Trentmann, G. Luderer, M. O. Andreae, and R. Servranckx, 2007: The Chisolm firestorm: Observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys., 7, 645659, https://doi.org/10.5194/acp-7-645-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothermel, R. C., 1991: Predicting behavior and size of crown fires in the northern Rocky Mountains. U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station Research Paper INT-438, 46 pp., https://doi.org/10.2737/INT-RP-438.

    • Crossref
    • Export Citation
  • Smith, D. A., and G. Cox, 1992: Major chemical species in buoyant turbulent diffusion flames. Combust. Flame, 91, 226238, https://doi.org/10.1016/0010-2180(92)90055-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Zhu, 2005: Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans, 40, 189208, https://doi.org/10.1016/j.dynatmoce.2005.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, H., 1998: Sensitivity to the representation of precipitating ice in CRM simulations of deep convection. Atmos. Res., 47–48, 415435, https://doi.org/10.1016/S0169-8095(98)00050-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, R. J., S. T. Evans, N. K. King, E. T. Stephens, D. R. Packham, and R. G. Vines, 1973: Convective activity above a large-scale bushfire. J. Appl. Meteor., 12, 11441150, https://doi.org/10.1175/1520-0450(1973)012<1144:CAAALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurston, W., K. J. Tory, R. J. B. Fawcett, and J. D. Kepert, 2013: Large-eddy simulations of bushfire plumes in the turbulent atmospheric boundary layer. Proc. 20th Int. Congress on Modelling and Simulation, Adelaide, South Australia, Australia, Modelling and Simulation Society of Australia and New Zealand, 284–289.

  • Thurston, W., K. J. Tory, R. J. B. Fawcett, and J. D. Kepert, 2015: Large-eddy simulations of pyro-convection and its sensitivity to environmental conditions. Research Proc. Bushfire and Natural Hazards CRC & AFAC 2015 Conf., Adelaide, South Australia, Australia, Bushfire and Natural Hazards CRC, 148–160.

  • Thurston, W., K. J. Tory, R. J. B. Fawcett, and J. D. Kepert, 2016: Large-eddy simulations of pyro-convection and its sensitivity to moisture. Proc. Fifth Int. Fire Behaviour and Fuels Conf., Melbourne, Australia, International Association of Wildland Fire, 6 pp.

  • Thurston, W., J. D. Kepert, K. J. Tory, and R. J. B. Fawcett, 2017: The contribution of turbulent plume dynamics to long-range spotting. Int. J. Wildland Fire, 26, 317330, https://doi.org/10.1071/WF16142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trentmann, J., G. Luderer, T. Winterrath, M. D. Fromm, R. Servranckx, M. Herzog, H.-F. Graf, and M. O. Andreae, 2006: Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): Reference simulation. Atmos. Chem. Phys., 6, 52475260, https://doi.org/10.5194/acp-6-5247-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 11311143, https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, D., 2001: Combustion chemistry and smoke. Forest Fires: Behavior and Ecological Effects, E. A. Johnson and K. Miyanishi, Eds., Academic Press, 55–77.

    • Crossref
    • Export Citation
  • Weil, J. C., 1988: Plume rise. Lectures on Air Pollution Modeling, A. Venkatram, Ed., Amer. Meteor. Soc., 119–166.

    • Crossref
    • Export Citation
  • Wotton, B. M., J. S. Gould, W. L. McCaw, N. P. Cheney, and S. W. Taylor, 2012: Flame temperature and residence time of fires in dry eucalypt forest. Int. J. Wildland Fire, 21, 270281, https://doi.org/10.1071/WF10127.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2001 635 101
PDF Downloads 1385 445 47