Effects of Low-Level Flow Orientation and Vertical Shear on the Structure and Intensity of Tropical Cyclones

Buo-Fu Chen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Buo-Fu Chen in
Current site
Google Scholar
PubMed
Close
,
Christopher A. Davis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
, and
Ying-Hwa Kuo National Center for Atmospheric Research, and University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Ying-Hwa Kuo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article explores the simultaneous effect of vertical wind shear (VWS) and low-level mean flow (LMF) on tropical cyclone (TC) structure evolution. The structural evolution of 180 western North Pacific TCs from 2002 to 2014 was measured by a new parameter, the RV ratio, which is defined as the ratio of a TC’s radius of 34-kt (17.5 m s−1) wind to its maximum wind speed at the ending point of the intensification period. Whereas TCs with RV ratios in the lowest quartile of all 180 samples favored intensification over expansion, and 82% of these TCs experienced rapid intensification, TCs with RV ratios in the topmost quartile favored size expansion over intensification. A novel result of this study is that TC RV ratios were found to correlate with the LMF orientation relative to the deep-layer VWS vector. Specifically, whereas an LMF directed toward the left-of-shear orientation favors TC intensification, a right-of-shear LMF favors TC size expansion. This study further analyzed the TC rainfall asymmetry and asymmetric surface flow using satellite observations. Results show that for a TC affected by an LMF with right-of-shear orientation, the positive surface flux anomaly in the upshear outer region promotes convection in the downshear rainband region. On the other hand, a left-of-shear LMF induces a positive surface flux anomaly in the downshear outer region, thus promoting convection in the upshear inner core. Enhancement of the symmetric inner-core convection favors intensification, whereas enhancement of the downshear rainband favors expansion.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Buo-Fu Chen, bfchen751126@gmail.com

Abstract

This article explores the simultaneous effect of vertical wind shear (VWS) and low-level mean flow (LMF) on tropical cyclone (TC) structure evolution. The structural evolution of 180 western North Pacific TCs from 2002 to 2014 was measured by a new parameter, the RV ratio, which is defined as the ratio of a TC’s radius of 34-kt (17.5 m s−1) wind to its maximum wind speed at the ending point of the intensification period. Whereas TCs with RV ratios in the lowest quartile of all 180 samples favored intensification over expansion, and 82% of these TCs experienced rapid intensification, TCs with RV ratios in the topmost quartile favored size expansion over intensification. A novel result of this study is that TC RV ratios were found to correlate with the LMF orientation relative to the deep-layer VWS vector. Specifically, whereas an LMF directed toward the left-of-shear orientation favors TC intensification, a right-of-shear LMF favors TC size expansion. This study further analyzed the TC rainfall asymmetry and asymmetric surface flow using satellite observations. Results show that for a TC affected by an LMF with right-of-shear orientation, the positive surface flux anomaly in the upshear outer region promotes convection in the downshear rainband region. On the other hand, a left-of-shear LMF induces a positive surface flux anomaly in the downshear outer region, thus promoting convection in the upshear inner core. Enhancement of the symmetric inner-core convection favors intensification, whereas enhancement of the downshear rainband favors expansion.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Buo-Fu Chen, bfchen751126@gmail.com
Save
  • Akter, N., and K. Tsuboki, 2012: Numerical simulation of Cyclone Sidr using a cloud-resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789810, https://doi.org/10.1175/2011MWR3643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, https://doi.org/10.1175/MWR-D-10-05062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 22352248, https://doi.org/10.1002/qj.2292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2015: Impacts of vortex intensity and outer winds on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 141, 525537, https://doi.org/10.1002/qj.2374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B.-F., C.-S. Lee, and R. L. Elsberry, 2014a: On tropical cyclone size and intensity changes associated with two types of long-lasting rainbands in monsoonal environments. Geophys. Res. Lett., 41, 25752581, https://doi.org/10.1002/2014GL059368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B.-F., R. L. Elsberry, and C.-S. Lee, 2014b: Origin and maintenance of the long-lasting, outer mesoscale convective system in Typhoon Fengshen (2008). Mon. Wea. Rev., 142, 28382859, https://doi.org/10.1175/MWR-D-14-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, https://doi.org/10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze, and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and R. A. Jeffries, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124, 13741387, https://doi.org/10.1175/1520-0493(1996)124<1374:VWSIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, K. L. Corbosiero, and C. M. Rozoff, 2018: Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and eastern North Pacific. Mon. Wea. Rev., 146, 11331155, https://doi.org/10.1175/MWR-D-17-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, https://doi.org/10.1175/MWR-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 16371652, https://doi.org/10.1175/2011JAS3578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, https://doi.org/10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, https://doi.org/10.1175/2008JPO3727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and S. J. Majumdar, 2014: Ensemble-based error and predictability metrics associated with tropical cyclogenesis. Part I: Basinwide perspective. Mon. Wea. Rev., 142, 28792898, https://doi.org/10.1175/MWR-D-13-00370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. S., K. K. W. Cheung, W.-T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223, https://doi.org/10.1175/2010MWR3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. S., C. C. Wu, T. C. C. Wang, and R. L. Elsberry, 2011: Advances in understanding the “perfect monsoon-influenced typhoon”: Summary from International Conference on Typhoon Morakot (2009). Asia Pac. J. Atmos. Sci., 47, 213222, https://doi.org/10.1007/s13143-011-0010-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. S., B. F. Chen, and R. L. Elsberry, 2012: Long-lasting convective systems in the outer region of tropical cyclones in the western North Pacific. Geophys. Res. Lett., 39, L21812, https://doi.org/10.1029/2012GL053685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., G. J. Goni, J. A. Knaff, C. Forbes, and M. M. Ali, 2013: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 14811500, https://doi.org/10.1007/s11069-012-0214-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127, 29923001, https://doi.org/10.1175/1520-0493(1999)127<2992:SOTCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maclay, K. S., M. DeMaria, and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 136, 48824898, https://doi.org/10.1175/2008MWR2268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56, 12241228, https://doi.org/10.1175/1520-0469(1999)056<1224:TROPVG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., R. Rogers, and P. D. Reasor, 2017: Thermodynamic and kinematic influences on precipitation symmetry in sheared tropical cyclones: Bertha and Cristobal (2014). Mon. Wea. Rev., 145, 44234446, https://doi.org/10.1175/MWR-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, https://doi.org/10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2014: Environmental helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci., 71, 43084320, https://doi.org/10.1175/JAS-D-14-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, https://doi.org/10.1175/BAMS-88-4-513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effects of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, https://doi.org/10.1002/qj.977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and F. Wentz, 2015: A scatterometer geophysical model function for climate-quality winds: QuikSCAT Ku-2011. J. Atmos. Oceanic Technol., 32, 18291846, https://doi.org/10.1175/JTECH-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., 2016: Meso‐β‐scale environment for the stationary band complex of vertically sheared tropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 24422451, https://doi.org/10.1002/qj.2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, https://doi.org/10.5194/acp-11-9395-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., P. A. Wittman, E. A. Serra, H. T. Tolman, J. Schauer, and T. Marchok, 2013: Evaluation of wave forecasts consistent with tropical cyclone warning center wind forecasts. Wea. Forecasting, 28, 287294, https://doi.org/10.1175/WAF-D-12-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenger, R. A., and R. L. Elsberry, 2013: Outer vortex wind structure changes during and following tropical cyclone secondary eyewall formation. Trop. Cyclone Res. Rev., 2, 184195, https://doi.org/10.6057/2013TCRR04.02.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, https://doi.org/10.1175/JAS-D-11-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomsen, G. L., R. K. Smith, and M. T. Montgomery, 2015: Tropical cyclone flow asymmetries induced by a uniform flow revisited. J. Adv. Model. Earth Syst., 7, 12651284, https://doi.org/10.1002/2015MS000477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, A. R., and J. H. Jiang, 2014: Dependence of US hurricane economic loss on maximum wind speed and storm size. Environ. Res. Lett., 9, 064019, https://doi.org/10.1088/1748-9326/9/6/064019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 644 136 4
PDF Downloads 584 117 5