High-Altitude (0–100 km) Global Atmospheric Reanalysis System: Description and Application to the 2014 Austral Winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

Stephen D. Eckermann Space Science Division, U.S. Naval Research Laboratory, Washington, D.C.

Search for other papers by Stephen D. Eckermann in
Current site
Google Scholar
PubMed
Close
,
Jun Ma Computational Physics, Inc., Springfield, Virginia

Search for other papers by Jun Ma in
Current site
Google Scholar
PubMed
Close
,
Karl W. Hoppel Remote Sensing Division, U.S. Naval Research Laboratory, Washington, D.C.

Search for other papers by Karl W. Hoppel in
Current site
Google Scholar
PubMed
Close
,
David D. Kuhl Remote Sensing Division, U.S. Naval Research Laboratory, Washington, D.C.

Search for other papers by David D. Kuhl in
Current site
Google Scholar
PubMed
Close
,
Douglas R. Allen Remote Sensing Division, U.S. Naval Research Laboratory, Washington, D.C.

Search for other papers by Douglas R. Allen in
Current site
Google Scholar
PubMed
Close
,
James A. Doyle Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by James A. Doyle in
Current site
Google Scholar
PubMed
Close
,
Kevin C. Viner Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Kevin C. Viner in
Current site
Google Scholar
PubMed
Close
,
Benjamin C. Ruston Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Benjamin C. Ruston in
Current site
Google Scholar
PubMed
Close
,
Nancy L. Baker Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Nancy L. Baker in
Current site
Google Scholar
PubMed
Close
,
Steven D. Swadley Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Steven D. Swadley in
Current site
Google Scholar
PubMed
Close
,
Timothy R. Whitcomb Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Timothy R. Whitcomb in
Current site
Google Scholar
PubMed
Close
,
Carolyn A. Reynolds Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Carolyn A. Reynolds in
Current site
Google Scholar
PubMed
Close
,
Liang Xu Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

Search for other papers by Liang Xu in
Current site
Google Scholar
PubMed
Close
,
N. Kaifler Institute of Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany

Search for other papers by N. Kaifler in
Current site
Google Scholar
PubMed
Close
,
B. Kaifler Institute of Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany

Search for other papers by B. Kaifler in
Current site
Google Scholar
PubMed
Close
,
Iain M. Reid ATRAD Pty Ltd, Thebarton, South Australia, Australia
University of Adelaide, Adelaide, South Australia, Australia

Search for other papers by Iain M. Reid in
Current site
Google Scholar
PubMed
Close
,
Damian J. Murphy Department of the Environment and Energy, Australian Antarctic Division, Kingston, Tasmania, Australia

Search for other papers by Damian J. Murphy in
Current site
Google Scholar
PubMed
Close
, and
Peter T. Love Department of the Environment and Energy, Australian Antarctic Division, Kingston, Tasmania, Australia

Search for other papers by Peter T. Love in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A data assimilation system (DAS) is described for global atmospheric reanalysis from 0- to 100-km altitude. We apply it to the 2014 austral winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE), an international field campaign focused on gravity wave dynamics from 0 to 100 km, where an absence of reanalysis above 60 km inhibits research. Four experiments were performed from April to September 2014 and assessed for reanalysis skill above 50 km. A four-dimensional variational (4DVAR) run specified initial background error covariances statically. A hybrid-4DVAR (HYBRID) run formed background error covariances from an 80-member forecast ensemble blended with a static estimate. Each configuration was run at low and high horizontal resolution. In addition to operational observations below 50 km, each experiment assimilated 105 observations of the mesosphere and lower thermosphere (MLT) every 6 h. While all MLT reanalyses show skill relative to independent wind and temperature measurements, HYBRID outperforms 4DVAR. MLT fields at 1-h resolution (6-h analysis and 1–5-h forecasts) outperform 6-h analysis alone due to a migrating semidiurnal (SW2) tide that dominates MLT dynamics and is temporally aliased in 6-h time series. MLT reanalyses reproduce observed SW2 winds and temperatures, including phase structures and 10–15-day amplitude vacillations. The 0–100-km reanalyses reveal quasi-stationary planetary waves splitting the stratopause jet in July over New Zealand, decaying from 50 to 80 km then reintensifying above 80 km, most likely via MLT forcing due to zonal asymmetries in stratospheric gravity wave filtering.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen D. Eckermann, stephen.eckermann@nrl.navy.mil

Abstract

A data assimilation system (DAS) is described for global atmospheric reanalysis from 0- to 100-km altitude. We apply it to the 2014 austral winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE), an international field campaign focused on gravity wave dynamics from 0 to 100 km, where an absence of reanalysis above 60 km inhibits research. Four experiments were performed from April to September 2014 and assessed for reanalysis skill above 50 km. A four-dimensional variational (4DVAR) run specified initial background error covariances statically. A hybrid-4DVAR (HYBRID) run formed background error covariances from an 80-member forecast ensemble blended with a static estimate. Each configuration was run at low and high horizontal resolution. In addition to operational observations below 50 km, each experiment assimilated 105 observations of the mesosphere and lower thermosphere (MLT) every 6 h. While all MLT reanalyses show skill relative to independent wind and temperature measurements, HYBRID outperforms 4DVAR. MLT fields at 1-h resolution (6-h analysis and 1–5-h forecasts) outperform 6-h analysis alone due to a migrating semidiurnal (SW2) tide that dominates MLT dynamics and is temporally aliased in 6-h time series. MLT reanalyses reproduce observed SW2 winds and temperatures, including phase structures and 10–15-day amplitude vacillations. The 0–100-km reanalyses reveal quasi-stationary planetary waves splitting the stratopause jet in July over New Zealand, decaying from 50 to 80 km then reintensifying above 80 km, most likely via MLT forcing due to zonal asymmetries in stratospheric gravity wave filtering.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen D. Eckermann, stephen.eckermann@nrl.navy.mil
Save
  • Allen, D. R., K. W. Hoppel, and D. D. Kuhl, 2014: Wind extraction potential from 4D-Var assimilation of stratospheric O3, N2O, and H2O using a global shallow water model. Atmos. Chem. Phys., 14, 33473360, https://doi.org/10.5194/acp-14-3347-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, D. R., K. W. Hoppel, and D. D. Kuhl, 2018: Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM. Atmos. Chem. Phys., 18, 29993026, https://doi.org/10.5194/acp-18-2999-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, N. L., and R. Langland, 2017: Assessing the impact of observations on the prediction of effective atmospheric angular momentum from NAVGEM. Fifth Symp. on the Joint Center for Satellite Data Assimilation, Seattle, WA, Amer. Meteor. Soc., 2.6, https://ams.confex.com/ams/97Annual/webprogram/Paper304159.html.

  • Ballish, B., X. Cao, E. Kalnay, and M. Kanamitsu, 1992: Incremental nonlinear normal-mode initialization. Mon. Wea. Rev., 120, 17231734, https://doi.org/10.1175/1520-0493(1992)120<1723:INNMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, W., and Coauthors, 2008: The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Trans. Geosci. Remote Sens., 46, 884900, https://doi.org/10.1109/TGRS.2008.917335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, K., and Coauthors, 2015: Momentum flux estimates accompanying multiscale gravity waves over Mount Cook, New Zealand, on 13 July 2014 during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 120, 93239337, https://doi.org/10.1002/2015JD023197,https://doi.org/10.1002/2015JA021568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker, 2017: Accounting for correlated observation error in a dual-formulation 4D variational data assimilation system. Mon. Wea. Rev., 145, 10191032, https://doi.org/10.1175/MWR-D-16-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chua, B. S., L. Xu, T. Rosmond, and E. D. Zaron, 2009: Preconditioning representer-based variational data assimilation systems: Application to NAVDAS-AR. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer, 307–319, https://doi.org/10.1007/978-3-540-71056-1_16.

    • Crossref
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 17831807, https://doi.org/10.1002/qj.49712455002.

    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001a: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869883, https://doi.org/10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001b: The NAVDAS source book 2001. NRL Publ. NRL/PU/7530–01-441, 163 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a396883.pdf.

  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 2009: Hybrid σp coordinate choices for a global model. Mon. Wea. Rev., 137, 224245, https://doi.org/10.1175/2008MWR2537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 2011: Explicitly stochastic parameterization of nonorographic gravity wave drag. J. Atmos. Sci., 68, 17491765, https://doi.org/10.1175/2011JAS3684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. Ma, D. L. Wu, and D. Broutman, 2007: A three-dimensional mountain wave imaged in satellite radiance throughout the stratosphere: Evidence of the effects of directional wind shear. Quart. J. Roy. Meteor. Soc., 133, 19591975, https://doi.org/10.1002/qj.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2009: High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. J. Atmos. Sol.-Terr. Phys., 71, 531551, https://doi.org/10.1016/j.jastp.2008.09.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. P. McCormack, J. Ma, T. F. Hogan, and K. A. Zawdie, 2014: Stratospheric analysis and forecast errors using hybrid and sigma coordinates. Mon. Wea. Rev., 142, 476485, https://doi.org/10.1175/MWR-D-13-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2016: Dynamics of orographic gravity waves observed in the mesosphere over the Auckland Islands during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). J. Atmos. Sci., 73, 38553876, https://doi.org/10.1175/JAS-D-16-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, W. J. R., and F. J. Mulligan, 2010: Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica. Atmos. Chem. Phys., 10, 11 43911 446, https://doi.org/10.5194/acp-10-11439-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2016: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, https://doi.org/10.1175/BAMS-D-14-00269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Coauthors, 2018: Large-amplitude mountain waves in the mesosphere accompanying weak cross-mountain flow during DEEPWAVE research flight RF22. J. Geophys. Res., in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Comas, M., and Coauthors, 2014: MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements. Atmos. Meas. Tech., 7, 36333651, https://doi.org/10.5194/amt-7-3633-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gauthier, P., and J. N. Thépaut, 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129, 20892102, https://doi.org/10.1175/1520-0493(2001)129<2089:IOTDFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gisinger, S., and Coauthors, 2017: Atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Mon. Wea. Rev., 145, 42494275, https://doi.org/10.1175/MWR-D-16-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordley, L. L., and Coauthors, 2009: The Solar Occultation for Ice Experiment. J. Atmos. Sol.-Terr. Phys., 71, 300315, https://doi.org/10.1016/j.jastp.2008.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guest, F. M., M. J. Reeder, C. J. Marks, and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57, 737752, https://doi.org/10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, and F. Weng, 2010: An improved fast radiative transfer model for special sensor microwave imager/sounder upper atmosphere sounding channels. J. Geophys. Res., 115, D15109, https://doi.org/10.1029/2010JD013878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: The Navy Global Environmental Model. Oceanography, 27, 116125, https://doi.org/10.5670/oceanog.2014.73.

  • Holdsworth, D. A., I. M. Reid, and M. Cervera, 2004: Buckland Park all-sky interferometric meteor radar. Radio Sci., 39, RS5009, https://doi.org/10.1029/2003RS003014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoover, B. T., and R. H. Langland, 2016: NAVGEM forecast and observation impact experiments with assimilation of ECWMF analysis data in the global domain. NRL Memo. Rep. NRL/MR/7531–16-9693, 37 pp., https://doi.org/10.13140/RG.2.2.32127.82083.

    • Crossref
    • Export Citation
  • Hoppel, K. W., N. L. Baker, L. Coy, S. D. Eckermann, J. P. McCormack, G. E. Nedoluha, and D. E. Siskind, 2008: Assimilation of stratospheric and mesospheric temperatures from MLS and SABER into a global NWP model. Atmos. Chem. Phys., 8, 61036116, https://doi.org/10.5194/acp-8-6103-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoppel, K. W., S. D. Eckermann, L. Coy, G. E. Nedoluha, D. R. Allen, S. D. Swadley, and N. L. Baker, 2013: Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon. Wea. Rev., 141, 33143330, https://doi.org/10.1175/MWR-D-13-00003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortal, M., and A. J. Simmons, 1991: Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev., 119, 10571074, https://doi.org/10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaifler, B., and N. Kaifler, 2016: Project DEEPWAVE DLR Lauder Rayleigh-Raman lidar data, version 3. UCAR/NCAR Earth Observing Laboratory, accessed 19 August 2017, https://doi.org/10.5065/d67p8wrn.

    • Crossref
    • Export Citation
  • Kaifler, B., N. Kaifler, B. Ehard, A. Dörnbrack, M. Rapp, and D. C. Fritts, 2015: Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophys. Res. Lett., 42, 94889494, https://doi.org/10.1002/2015GL066465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., B. A. Boville, K. Hamilton, E. Manzini, and K. Shibata, 1999: Kinetic energy spectrum of horizontal motions in middle-atmosphere models. J. Geophys. Res., 104, 27 17727 190, https://doi.org/10.1029/1999JD900814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, https://doi.org/10.1175/MWR-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkee, D. B., G. A. Poe, D. J. Boucher, S. D. Swadley, Y. Hong, J. E. Wessel, and E. A. Uliana, 2008: Design and evaluation of the first Special Sensor Microwave Imager/Sounder. IEEE Trans. Geosci. Remote Sens., 46, 863883, https://doi.org/10.1109/TGRS.2008.917980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, A., and Coauthors, 2007: Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res., 112, D24S36, https://doi.org/10.1029/2007JD008724.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, B. R. Morton, and T. L. Clark, 2000: Observations and numerical modelling of mountain waves over the Southern Alps of New Zealand. Quart. J. Roy. Meteor. Soc., 126, 27652788, https://doi.org/10.1002/qj.49712656909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. R. Huning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bull. Amer. Meteor. Soc., 87, 896910, https://doi.org/10.1175/BAMS-87-7-896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H.-L., F. Sassi, and R. R. Garcia, 2009: Error growth in a whole atmosphere climate model. J. Atmos. Sci., 66, 173186, https://doi.org/10.1175/2008JAS2825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, D. J., D. R. Jackson, J. Thuburn, and C. Mathison, 2013: Validation of Met Office upper stratospheric and mesospheric analyses. Quart. J. Roy. Meteor. Soc., 139, 12141228, https://doi.org/10.1002/qj.2031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1981: A global three-dimensional multivariate statistical interpolation scheme. Mon. Wea. Rev., 109, 701721, https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., R. R. Garcia, D. E. Kinnison, B. A. Boville, F. Sassi, S. C. Solomon, and K. Matthes, 2007: Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res., 112, D23306, https://doi.org/10.1029/2006JD008306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, B. T., L. E. Deaver, R. E. Thompson, L. L. Gordley, M. J. McHugh, M. E. Hervig, and J. M. Russell III, 2011: Retrieval of temperature and pressure using broadband solar occultation: SOFIE approach and results. Atmos. Meas. Tech., 4, 893907, https://doi.org/10.5194/amt-4-893-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, T., B. Ruston, S. D. Swadley, and A. Booton, 2015: Assimilation impacts of SSMIS upper atmosphere soundings with improved orbital bias predictors in NAVGEM. 20th Int. TOVS Study Conf., Lake Geneva, WI, International TOVS Working Group, 11.03, https://cimss.ssec.wisc.edu/itwg/itsc/itsc20/program/PDFs/2Nov/session11a/11_03_maurer.pdf.

  • McCormack, J. P., and Coauthors, 2017: Comparison of mesospheric winds from a high-altitude meteorological analysis system and meteor radar observations during the boreal winters of 2009–2010 and 2012–2013. J. Atmos. Sol.-Terr. Phys., 154, 132166, https://doi.org/10.1016/j.jastp.2016.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, S. E., F. Sassi, and A. J. Mannucci, 2015: SAMI3/SD-WACCM-X simulations of ionospheric variability during northern winter 2009. Space Wea., 13, 568584, https://doi.org/10.1002/2015SW001223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., W. E. Ward, V. I. Fomichev, K. Semeniuk, S. R. Beagley, N. A. McFarlane, and T. G. Shepherd, 2006: Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian Middle Atmosphere Model. J. Geophys. Res., 111, D17111, https://doi.org/10.1029/2005JD006776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLay, J., C. H. Bishop, and C. A. Reynolds, 2010: A local formulation of the ensemble transform (ET) analysis perturbation scheme. Wea. Forecasting, 25, 985993, https://doi.org/10.1175/2010WAF2222359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nezlin, Y., S. Polavarapu, and Y. J. Rochon, 2009a: A new method of assessing filtering schemes in data assimilation systems. Quart. J. Roy. Meteor. Soc., 135, 10591070, https://doi.org/10.1002/qj.418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nezlin, Y., Y. J. Rochon, and S. Polavarapu, 2009b: Impact of tropospheric and stratospheric data assimilation on mesospheric prediction. Tellus, 61A, 154159, https://doi.org/10.1111/j.1600-0870.2008.00368.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pautet, P.-D., and Coauthors, 2016: Large-amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7°S) during the DEEPWAVE project. J. Geophys. Res. Atmos., 121, 14311441, https://doi.org/10.1002/2015JD024336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., S. Z. Ren, Y. Rochon, D. Sankey, N. Ek, J. Koshyk, and D. Tarasick, 2005: Data assimilation with the Canadian middle atmosphere model. Atmos.–Ocean, 43, 77100, https://doi.org/10.3137/ao.430105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., N. Adams, and T. P. Lane, 1999: Radiosonde observations of partially trapped lee waves over Tasmania, Australia. J. Geophys. Res., 104, 16 71916 727, https://doi.org/10.1029/1999JD900038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, I. M., D. A. Holdsworth, R. J. Morris, D. J. Murphy, and R. A. Vincent, 2006: Meteor observations using the Davis mesosphere-stratosphere-troposphere radar. J. Geophys. Res., 111, A05305, https://doi.org/10.1029/2005JA011443.

    • Search Google Scholar
    • Export Citation
  • Reid, I. M., D. M. Murphy, A. Mackinnon, A. Spargo, P. Love, and C. Adami, 2015: Meteor radar winds, Kingston, Tasmania. Version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 24 May 2017, https://data.eol.ucar.edu/dataset/379.043.

  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res., 113, D17101, https://doi.org/10.1029/2008JD010013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, S., S. M. Polavarapu, and T. G. Shepherd, 2008: Vertical propagation of information in a middle atmosphere data assimilation system by gravity-wave drag feedbacks. Geophys. Res. Lett., 35, L06804, https://doi.org/10.1029/2007GL032699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, S., S. M. Polavarapu, S. R. Beagley, Y. Nezlin, and Y. J. Rochon, 2011: The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming. J. Geophys. Res., 116, D19116, https://doi.org/10.1029/2011JD015943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. G. McLay, J. S. Goerss, E. A. Serra, D. Hodyss, and C. R. Sampson, 2011: Impact of resolution and design on the U.S. Navy global ensemble performance in the tropics. Mon. Wea. Rev., 139, 21452155, https://doi.org/10.1175/2011MWR3546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rezac, L., A. Kutepov, J. M. Russell III, A. G. Feofilov, J. Yue, and R. A. Goldberg, 2015: Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements. J. Atmos. Sol.-Terr. Phys., 130–131, 2342, https://doi.org/10.1016/j.jastp.2015.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosmond, T. E., 1997: A technical description of the NRL Adjoint Modeling System. NRL Memo. Rep. NRL/MR/7532/97/7230, 53 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a330960.pdf.

    • Crossref
    • Export Citation
  • Sankey, D., S. Ren, S. Polavarapu, Y. J. Rochon, Y. Nezlin, and S. Beagley, 2007: Impact of data assimilation filtering methods on the mesosphere. J. Geophys. Res., 112, D24104, https://doi.org/10.1029/2007JD008885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., and Coauthors, 2008: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res., 113, D15S11, https://doi.org/10.1029/2007JD008783.

    • Search Google Scholar
    • Export Citation
  • Seaman, R., W. Bourke, P. Steinle, T. Hart, G. Embery, M. Naughton, and L. Rikus, 1995: Evolution of the Bureau of Meteorology’s global assimilation and prediction system. 1. Analysis and initialization. Aust. Meteor. Mag., 44, 118, http://www.bom.gov.au/amm/papers.php?year=1995.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 2003: The origin of stationary planetary waves in the upper mesosphere. J. Atmos. Sci., 60, 30333041, https://doi.org/10.1175/1520-0469(2003)060<3033:TOOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. A., D. C. Fritts, and T. E. Vanzandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 14041410, https://doi.org/10.1175/1520-0469(1987)044<1404:EFASSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. M., S. L. Vadas, W. J. Baggaley, G. Hernandez, and J. Baumgardner, 2013: Gravity wave coupling between the mesosphere and thermosphere over New Zealand. J. Geophys. Res. Space Phys., 118, 26942707, https://doi.org/10.1002/jgra.50263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swadley, S. D., G. A. Poe, W. Bell, Y. Hong, D. B. Kunkee, S. McDermid, and T. Leblanc, 2008: Analysis and characterization of the SSMIS upper atmosphere sounding channel measurements. IEEE Trans. Geosci. Remote Sens., 46, 962983, https://doi.org/10.1109/TGRS.2008.916980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., T. J. Fuller-Rowell, R. A. Akmaev, M. Hu, D. T. Kleist, and M. D. Iredell, 2012: First simulations with a whole atmosphere data assimilation and forecast system: The January 2009 major sudden stratospheric warming. J. Geophys. Res., 116, A12321, https://doi.org/10.1029/2011JA017081; Correction, 117, A03326, https://doi.org/10.1029/2012JA017630.

    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, https://doi.org/10.1256/qj.02.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wergen, W., 1989: Normal mode initialization and atmospheric tides. Quart. J. Roy. Meteor. Soc., 115, 535545, https://doi.org/10.1002/qj.49711548706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., T. Rosmond, and R. Daley, 2005: Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57A, 546559, https://doi.org/10.3402/tellusa.v57i4.14710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., T. Rosmond, J. Goerss, and B. Chua, 2007: Toward a weak constraint operational 4D-Var system: Application to the Burgers’ equation. Meteor. Z., 16, 741753, https://doi.org/10.1127/0941-2948/2007/0246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., J. S. Wright, X. Zheng, N. J. Livesey, H. Vömel, and X. Zhou, 2016: Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower–middle stratosphere over the Tibetan Plateau during boreal summer. Atmos. Meas. Tech., 9, 35473566, https://doi.org/10.5194/amt-9-3547-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, K., T. Hock, and C. Martin, 2016: DEEPWAVE 2014 dropsonde data quality report, version 3.0. UCAR/NCAR Earth Observing Laboratory Tech. Rep., 11 pp., https://doi.org/10.5065/D6XW4GTB.

    • Crossref
    • Export Citation
  • Zink, F., and R. A. Vincent, 2001: Wavelet analysis of stratosphere gravity wave packets over Macquarie Island: 1. Wave parameters. J. Geophys. Res., 106, 10 27510 288, https://doi.org/10.1029/2000JD900847.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3634 741 37
PDF Downloads 752 178 22