An Observational and Modeling Study of Mesoscale Air Masses with High Theta-E

Wolfgang Hanft Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Wolfgang Hanft in
Current site
Google Scholar
PubMed
Close
and
Adam L. Houston Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Adam L. Houston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Typically, the cool side of an airmass boundary is stable to vertical motions due to its associated negative buoyancy. However, under certain conditions, the air on the cool side of the boundary can undergo a transition wherein it assumes an equivalent potential temperature and surface-based convective available potential energy that are higher than those of the air mass on the warm side of the boundary. The resultant air mass is herein referred to as a mesoscale air mass with high theta-e (MAHTE). Results are presented from an observational and mesoscale modeling study designed to examine MAHTE characteristics and the processes responsible for MAHTE formation and evolution. Observational analysis focuses on near-surface observations of an MAHTE in northwestern Kansas on 20 June 2016 collected with a Combined Mesonet and Tracker. The highest equivalent potential temperature is found to be 15–20 K higher than what was observed in the warm sector and located 2–5 km on the cool side of the boundary. This case was also modeled using WRF-ARW to examine the processes involved in MAHTE formation that could not be inferred through observations alone. Model analysis indicates that differential vertical advection of equivalent potential temperature across the boundary is important for simulated MAHTE formation. Specifically, deeper vertical mixing/advection in the warm sector reduces moisture (equivalent potential temperature), while vertical motion/mixing is suppressed on the cool side of the boundary, thereby allowing largely unmitigated insolation-driven increases in equivalent potential temperature. Model analysis also suggests that surface moisture fluxes were unimportant in simulated MAHTE formation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-17-0389.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wolfgang Hanft, wolfganghanft@huskers.unl.edu

Abstract

Typically, the cool side of an airmass boundary is stable to vertical motions due to its associated negative buoyancy. However, under certain conditions, the air on the cool side of the boundary can undergo a transition wherein it assumes an equivalent potential temperature and surface-based convective available potential energy that are higher than those of the air mass on the warm side of the boundary. The resultant air mass is herein referred to as a mesoscale air mass with high theta-e (MAHTE). Results are presented from an observational and mesoscale modeling study designed to examine MAHTE characteristics and the processes responsible for MAHTE formation and evolution. Observational analysis focuses on near-surface observations of an MAHTE in northwestern Kansas on 20 June 2016 collected with a Combined Mesonet and Tracker. The highest equivalent potential temperature is found to be 15–20 K higher than what was observed in the warm sector and located 2–5 km on the cool side of the boundary. This case was also modeled using WRF-ARW to examine the processes involved in MAHTE formation that could not be inferred through observations alone. Model analysis indicates that differential vertical advection of equivalent potential temperature across the boundary is important for simulated MAHTE formation. Specifically, deeper vertical mixing/advection in the warm sector reduces moisture (equivalent potential temperature), while vertical motion/mixing is suppressed on the cool side of the boundary, thereby allowing largely unmitigated insolation-driven increases in equivalent potential temperature. Model analysis also suggests that surface moisture fluxes were unimportant in simulated MAHTE formation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-17-0389.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wolfgang Hanft, wolfganghanft@huskers.unl.edu

Supplementary Materials

    • Supplemental Materials (ZIP 4.51 MB)
Save
  • Bannon, P., 2002: Theoretical foundations for models of moist convection. J. Atmos. Sci., 59, 19671982, https://doi.org/10.1175/1520-0469(2002)0591967:TFFMOM2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burghardt, B. J., C. Evans, and P. J. Roebber, 2014: Assessing the predictability of convection initiation in the high plains using an object-based approach. Wea. Forecasting, 29, 403418, https://doi.org/10.1175/WAF-D-13-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)1020140:AOGCMT2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., Z. Ma, and X. Fan, 2012: A comparative study of two land surface schemes in WRF Model over eastern China. J. Trop. Meteor., 18, 445456.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF Model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)0463077:NSOCOD2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Gilmore, M. S., and L. J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130, 23492372, https://doi.org/10.1175/1520-0493(2002)1302349:IOTLEO2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R., 2000: Sources and sinks of climate entropy. Quart. J. Roy. Meteor. Soc., 126, 19531970, https://doi.org/10.1002/qj.49712656619.

  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groenemeijer, P., U. Corsmeier, and Ch. Kottmeier, 2011: The development of tornadic storms on the cold side of a front favoured by local enhancement of moisture and CAPE. Atmos. Res., 100, 765781, https://doi.org/10.1016/j.atmosres.2010.10.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guyer, J. L., and R. Ewald, 2004: Record hail event—Examination of the Aurora, Nebraska supercell of 22 June 2003. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 11B.1, https://ams.confex.com/ams/11aram22sls/techprogram/paper_82087.htm.

  • Langhans, W., and D. M. Romps, 2015: The origin of water vapor rings in tropical oceanic cold pools. Geophys. Res. Lett., 42, 78257834, https://doi.org/10.1002/2015GL065623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., P. F. Linden, and J. W. Rottman, 2002: A laboratory study of the velocity structure in an intrusive gravity current. J. Fluid Mech., 456, 3348, https://doi.org/10.1017/S0022112001007303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okalebo, J., R. J. Oglesby, S. Feng, K. Hubbard, A. Kilic, M. Hayes, and C. Hays, 2016: An evaluation of the Community Land Model (version 3.5) and Noah land surface models for temperature and precipitation over Nebraska (central Great Plains): Implications for agriculture in simulations of future climate change and adaptation. Climate Change Adaptation, Resilience and Hazards, W. Filho et al., Eds., Springer, 21–34, https://doi.org/10.1007/978-3-319-39880-8_2.

    • Crossref
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002: Entropy budget of an atmosphere in radiative–convective equilibrium. Part II: Latent heat transport and moist processes. J. Atmos. Sci., 59, 140149, https://doi.org/10.1175/1520-0469(2002)0590140:EBOAAI2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., A. H. Oort, M. de Almeida, and A. Tomé, 1991: Entropy budget of the atmosphere. J. Geophys. Res., 96, 10 98110 988, https://doi.org/10.1029/91JD00721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, https://doi.org/10.1175/1520-0477(1994)0750995:VOTOOR2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174191, https://doi.org/10.1175/1520-0493(2000)1280174:TAOSTW2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2013: Sources and sinks of entropy in the atmosphere. J. Adv. Model. Earth Syst., 5, 755763, https://doi.org/10.1002/jame.20050.

  • Riganti, C. J., and A. L. Houston, 2017: Rear-flank outflow dynamics and thermodynamics in the 10 June 2010 Last Chance, Colorado, supercell. Mon. Wea. Rev., 145, 24872504, https://doi.org/10.1175/MWR-D-16-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., A. M. Tompkins, and D. J. Parker, 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61, 15821595, https://doi.org/10.1175/1520-0469(2004)0611582:SMOTRO2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2016: Modifications of the atmospheric moisture field as a result of cold-pool dynamics. Quart. J. Roy. Meteor. Soc., 142, 3042, https://doi.org/10.1002/qj.2625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1987: Gravity Currents in the Environment and Laboratory. Ellis Horwood Limited, 248 pp.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Skyllingstad, E. D., and S. P. de Szoeke, 2015: Cloud-resolving large-eddy simulation of tropical convective development and surface fluxes. Mon. Wea. Rev., 143, 24412458, https://doi.org/10.1175/MWR-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land-surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)0581650:OOTCIL2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. Cai, and H. V. Murphey, 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85, 10951106, https://doi.org/10.1175/BAMS-85-8-1095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., M. Katsumata, and K. Yoneyama, 2014: Variability in surface meteorology and air-sea fluxes due to cumulus convective systems observed during CINDY/DYNAMO. J. Geophys. Res. Atmos., 119, 20642078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., S. M. Perugini, and C. W. Fairall, 1995: Convective wakes in the equatorial western Pacific during TOGA. Mon. Wea. Rev., 123, 110123, https://doi.org/10.1175/1520-0493(1995)1230110:CWITEW2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1225 571 226
PDF Downloads 928 279 10