Predictability of Recurrent Weather Regimes over North America during Winter from Submonthly Reforecasts

N. Vigaud International Research Institute for Climate and Society, Earth Institute, Columbia University, New York, New York

Search for other papers by N. Vigaud in
Current site
Google Scholar
PubMed
Close
,
A.W. Robertson International Research Institute for Climate and Society, Earth Institute, Columbia University, New York, New York

Search for other papers by A.W. Robertson in
Current site
Google Scholar
PubMed
Close
, and
M. K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Department of Meteorology, Center of Excellence for Climate Change Research, King Abdulaziz University, Jiddah, Saudi Arabia

Search for other papers by M. K. Tippett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four recurrent weather regimes are identified over North America from October to March through a k-means clustering applied to MERRA daily 500-hPa geopotential heights over the 1982–2014 period. Three regimes resemble Rossby wave train patterns with some baroclinicity, while one is related to an NAO-like meridional pressure gradient between eastern North America and western regions of the North Atlantic. All regimes are associated with distinct rainfall and surface temperature anomalies over North America. The four-cluster partition is well reproduced by ECMWF week-1 reforecasts over the 1995–2014 period in terms of spatial structures, daily regime occurrences, and seasonal regime counts. The skill in forecasting daily regime sequences and weekly regime counts is largely limited to 2 weeks. However, skill relationships with the MJO, ENSO, and SST variability in the Atlantic and Indian Oceans suggest further potential for subseasonal predictability based on wintertime large-scale weather regimes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicolas Vigaud, nicolas.vigaud@gmail.com

Abstract

Four recurrent weather regimes are identified over North America from October to March through a k-means clustering applied to MERRA daily 500-hPa geopotential heights over the 1982–2014 period. Three regimes resemble Rossby wave train patterns with some baroclinicity, while one is related to an NAO-like meridional pressure gradient between eastern North America and western regions of the North Atlantic. All regimes are associated with distinct rainfall and surface temperature anomalies over North America. The four-cluster partition is well reproduced by ECMWF week-1 reforecasts over the 1995–2014 period in terms of spatial structures, daily regime occurrences, and seasonal regime counts. The skill in forecasting daily regime sequences and weekly regime counts is largely limited to 2 weeks. However, skill relationships with the MJO, ENSO, and SST variability in the Atlantic and Indian Oceans suggest further potential for subseasonal predictability based on wintertime large-scale weather regimes.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nicolas Vigaud, nicolas.vigaud@gmail.com
Save
  • Athanasiadis, P., J. Wallace, and J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, https://doi.org/10.1175/2009JAS3270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and T. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A., and R. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., E. H. Berbery, and R. Higgins, 2011: Modulations of cold season U.S. daily precipitation by the Madden–Julian oscillation. J. Climate, 24, 51575166, https://doi.org/10.1175/2011JCLI4018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M., Y.-H. Lee, and J. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961980, https://doi.org/10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P. X. M., and Coauthors, 2008: CPC unified gauge-based analysis of global daily precipitation. Western Pacific Geophysics Meeting, Cairns, Australia, Amer. Geophys. Union, 14 pp.

  • Chen, W., and H. van den Dool, 2003: Sensitivity of teleconnection patterns to the sign of their primary action center. Mon. Wea. Rev., 131, 28852899, https://doi.org/10.1175/1520-0493(2003)131<2885:SOTPTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcambre, S., D. Lorenz, D. Vimont, and J. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 Global Climate Models: Twentieth-century intermodel variability. J. Climate, 26, 49104929, https://doi.org/10.1175/JCLI-D-12-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615626, https://doi.org/10.1175/MWR-D-15-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci., 9, 809814, https://doi.org/10.1038/ngeo2824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eade, R., D. Smith, A. Scaife, E. Wallace, N. Dunstone, L. Hermanson, and N. Robinson, 2014: Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophys. Res. Lett., 41, 56205628, https://doi.org/10.1002/2014GL061146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., S. Corti, and M. Janousek, 2015: Flow-dependent verification of the ECMWF ensemble over the Euro–Atlantic sector. Quart. J. Roy. Meteor. Soc., 141, 916924, https://doi.org/10.1002/qj.2411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerrity, J., 1992: A note on Gandin and Murphy’s equitable skill score. Mon. Wea. Rev., 120, 27092712, https://doi.org/10.1175/1520-0493(1992)120<2709:ANOGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghil, M., and A. Robertson, 2002: “Waves” vs. “particles” in the atmosphere’s phase space: A pathway to long-range forecasting? Proc. Nat. Acad. Sci., 99, 24932500, https://doi.org/10.1073/pnas.012580899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, K., and J. Martin, 2017: Synoptic features associated with temporally coherent modes of variability of the North Pacific jet stream. J. Climate, 30, 3954, https://doi.org/10.1175/JCLI-D-15-0833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpert, M., and C. Ropelewski, 1992: Surface temperature patterns associated with the southern oscillation. J. Climate, 5, 577593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R., and W. Shi, 2000: Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States. J. Climate, 13, 759776, https://doi.org/10.1175/1520-0442(2000)013<0759:DFRFIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, https://doi.org/10.1007/s00382-010-0792-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffe, S. C., J. Martin, D. Vimont, and D. Lorenz, 2011: A synoptic climatology of episodic, subseasonal retractions of the Pacific jet. J. Climate, 24, 28462860, https://doi.org/10.1175/2010JCLI3995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño’s impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/1748-9326/11/5/054021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, https://doi.org/10.1016/0377-0265(83)90013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993a: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 26252644, https://doi.org/10.1175/1520-0469(1993)050<2625:MFRITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993b: Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci., 50, 26452673, https://doi.org/10.1175/1520-0469(1993)050<2645:MFRITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E., T. Bracegirdle, and I. Seierstad, 2009: Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation. Climate Dyn., 33, 187197, https://doi.org/10.1007/s00382-008-0431-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2009: The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 22502262, https://doi.org/10.1175/2009MWR2831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. Wu, 2011: Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J. Climate, 24, 28012813, https://doi.org/10.1175/2010JCLI3889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2018: Extratropical response to the MJO: Nonlinearity and sensitivity to the initial state. J. Atmos. Sci., 75, 219234, https://doi.org/10.1175/JAS-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2005: Tropical Pacific link to the two dominant patterns of atmospheric variability. Geophys. Res. Lett., 32, L03801, https://doi.org/10.1029/2004GL021495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Derome, and G. Brunet, 2007: The nonlinear transient atmospheric response to tropical forcing. J. Climate, 20, 56425665, https://doi.org/10.1175/2007JCLI1383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, https://doi.org/10.1175/2010MWR3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., C. Li, C. Grams, and T. Woollings, 2017: The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Quart. J. Roy. Meteor. Soc., 143, 29602972, https://doi.org/10.1002/qj.3155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAfee, S., and J. Russell, 2008: Northern annular mode impact on spring climate in the western United States. Geophys. Res. Lett., 35, L17701, https://doi.org/10.1029/2008GL034828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, C., and G. Rivière, 2011: The link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci., 68, 17301748, https://doi.org/10.1175/2011JAS3635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteverdi, J., and J. Null, 1998: A balanced view of the impact of the 1997/98 El Niño on Californian precipitation. Weather, 53, 310313, https://doi.org/10.1002/j.1477-8696.1998.tb06406.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., and G. Plaut, 2003: The impact of El Niño–Southern Oscillation upon weather regimes over Europe and the North Atlantic during boreal winter. Int. J. Climatol., 23, 363379, https://doi.org/10.1002/joc.890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neena, J. M., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, https://doi.org/10.1175/JCLI-D-13-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and C. Grams, 2018: Linking low-frequency large-scale circulation patterns to cold air outbreak formation in the northeastern North Atlantic. Geophys. Res. Lett., 45, 25422553, https://doi.org/10.1002/2017GL076921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. Chelton, K. Casey, and M. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E., M. Stoner, N. Johnson, M. L’Heureux, D. Collins, and S. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, https://doi.org/10.1007/s00382-012-1493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and M. Drouard, 2015: Dynamics of the northern annular mode at weekly time scales. J. Atmos. Sci., 72, 45694590, https://doi.org/10.1175/JAS-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A., and W. Metz, 1989: Three-dimensional linear instability of persistent anomalous large-scale flows. J. Atmos. Sci., 46, 27832801, https://doi.org/10.1175/1520-0469(1989)046<2783:TDLIOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12, 17961813, https://doi.org/10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A., Y. Kushnir, U. Lall, and J. Nakamura, 2015: Weather and climatic drivers of extreme flooding events over the Midwest of the United States. Extreme Events: Observations, Modeling and Economics, Geophys. Monogr., Vol. 214, Amer. Geophys. Union, 113–124, https://doi.org/10.1002/9781119157052.ch9.

    • Crossref
    • Export Citation
  • Ropelewski, C., and M. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and J. Knight, 2008: Ensemble simulations of the cold European winter of 2005–2006. Quart. J. Roy. Meteor. Soc., 134, 16471659, https://doi.org/10.1002/qj.312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., and D. Straus, 2007: Is blocking a circulation regime? Mon. Wea. Rev., 135, 24062413, https://doi.org/10.1175/MWR3410.1.

  • Straus, D., and F. Molteni, 2004: Circulation regimes and SST forcing: Results from large GCM ensembles. J. Climate, 17, 16411656, https://doi.org/10.1175/1520-0442(2004)017<1641:CRASFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D., S. Corti, and F. Molteni, 2007: Circulation regimes: Chaotic variability versus SST-forced predictability. J. Climate, 20, 22512272, https://doi.org/10.1175/JCLI4070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, V., S. Saha, and A. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., and A. Robertson, 2017: Convection regimes and tropical-midlatitude interactions over the Intra-American Seas from May to November. Int. J. Climatol., 37, 9871000, https://doi.org/10.1002/joc.5051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., B. Pohl, and J. Crétat, 2012: Tropical-temperate interactions over southern Africa simulated by a regional climate model. Climate Dyn., 39, 28952916, https://doi.org/10.1007/s00382-012-1314-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., A. Robertson, and M. Tippett, 2017: Multimodel ensembling of subseasonal precipitation forecasts over North America. Mon. Wea. Rev., 145, 39133928, https://doi.org/10.1175/MWR-D-17-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2011: Predictability and forecasting. Intraseasonal Variability of the Atmosphere-Ocean Climate System, W. Lau and D. Waliser, Eds., Springer, 389–423, https://doi.org/10.1007/3-540-27250-X_12.

    • Crossref
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, https://doi.org/10.1175/BAMS-84-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., N. Schaller, C. O’Reilly, D. A. MacLeod, and T. Palmer, 2017: Atmospheric seasonal forecasts of the twentieth century: Multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution. Quart. J. Roy. Meteor. Soc., 143, 917926, https://doi.org/10.1002/qj.2976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, https://doi.org/10.1002/qj.625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2013: Sub-seasonal to Seasonal Prediction: Research implementation plan. WMO Rep., 71 pp., http://s2sprediction.net/file/documents_reports/S2S_Implem_plan_en.pdf.

  • Yao, W., H. Lin, and J. Derome, 2011: Submonthly forecasting of winter surface air temperature in North America based on organized tropical convection. Atmos.–Ocean, 49, 5160, https://doi.org/10.1080/07055900.2011.556882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett., 43, 13921398, https://doi.org/10.1002/2016GL067762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 14591471, https://doi.org/10.1007/s00382-011-1001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 955 236 23
PDF Downloads 830 203 20