Convective Storm Life Cycle and Environments near the Sierras de Córdoba, Argentina

Jake P. Mulholland Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Jake P. Mulholland in
Current site
Google Scholar
PubMed
Close
,
Stephen W. Nesbitt Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Stephen W. Nesbitt in
Current site
Google Scholar
PubMed
Close
,
Robert J. Trapp Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert J. Trapp in
Current site
Google Scholar
PubMed
Close
,
Kristen L. Rasmussen Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Kristen L. Rasmussen in
Current site
Google Scholar
PubMed
Close
, and
Paola V. Salio Department of Atmospheric and Oceanic Sciences, University of Buenos Aires, Buenos Aires, Argentina

Search for other papers by Paola V. Salio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite observations have revealed that some of the world’s most intense deep convective storms occur near the Sierras de Córdoba, Argentina, South America. A C-band, dual-polarization Doppler weather radar recently installed in the city of Córdoba in 2015 is now providing a high-resolution radar perspective of this intense convection. Radar data from two austral spring and summer seasons (2015–17) are used to document the convective life cycle, while reanalysis data are utilized to construct storm environments across this region. Most of the storms in the region are multicellular and initiate most frequently during the early afternoon and late evening hours near and just east of the Sierras de Córdoba. Annually, the peak occurrence of these storms is during the austral summer months of December, January, and February. These Córdoba radar-based statistics are shown to be comparable to statistics derived from Tropical Rainfall Measuring Mission Precipitation Radar data. While generally similar to storm environments in the United States, storm environments in central Argentina tend to be characterized by larger CAPE and weaker low-level vertical wind shear. One of the more intriguing results is the relatively fast transition from first storms to larger mesoscale convective systems, compared with locations in the central United States.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jake P. Mulholland, jmulhol2@illinois.edu

Abstract

Satellite observations have revealed that some of the world’s most intense deep convective storms occur near the Sierras de Córdoba, Argentina, South America. A C-band, dual-polarization Doppler weather radar recently installed in the city of Córdoba in 2015 is now providing a high-resolution radar perspective of this intense convection. Radar data from two austral spring and summer seasons (2015–17) are used to document the convective life cycle, while reanalysis data are utilized to construct storm environments across this region. Most of the storms in the region are multicellular and initiate most frequently during the early afternoon and late evening hours near and just east of the Sierras de Córdoba. Annually, the peak occurrence of these storms is during the austral summer months of December, January, and February. These Córdoba radar-based statistics are shown to be comparable to statistics derived from Tropical Rainfall Measuring Mission Precipitation Radar data. While generally similar to storm environments in the United States, storm environments in central Argentina tend to be characterized by larger CAPE and weaker low-level vertical wind shear. One of the more intriguing results is the relatively fast transition from first storms to larger mesoscale convective systems, compared with locations in the central United States.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jake P. Mulholland, jmulhol2@illinois.edu
Save
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, https://doi.org/10.1175/2010MWR3233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dial, G. L., J. P. Racy, and R. L. Thompson, 2010: Short-term convective mode evolution along synoptic boundaries. Wea. Forecasting, 25, 14301446, https://doi.org/10.1175/2010WAF2222315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2015: Radar Meteorology: Principles and Practice. Cambridge University Press, 256 pp.

    • Crossref
    • Export Citation
  • Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., B. Geerts, and L. Tian, 2000: TRMM precipitation radar reflectivity profiles as compared with high-resolution airborne and ground-based radar measurements. J. Appl. Meteor., 39, 20802102, https://doi.org/10.1175/1520-0450(2001)040<2080:TPRRPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, https://doi.org/10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and B. E. Mapes, 2001: Mesoscale processes and severe convective weather. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 71–122, https://doi.org/10.1175/0065-9401-28.50.71.

    • Crossref
    • Export Citation
  • Klimowski, B. A., M. R. Hjelmfelt, and M. J. Bunkers, 2004: Radar observations of the early evolution of bow echoes. Wea. Forecasting, 19, 727734, https://doi.org/10.1175/1520-0434(2004)019<0727:ROOTEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lichtenstein, E. R., 1980: La depresion del Noroeste Argentino (The northwestern Argentina low). Ph.D. dissertation, Ciudad Universitaria, 223 pp.

  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., G. R. Herman, R. C. Tournay, J. M. Peters, and R. S. Schumacher, 2015: Double impact: When both tornadoes and flash floods threaten the same place at the same time. Wea. Forecasting, 30, 16731693, https://doi.org/10.1175/WAF-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze, 2014: Severe convection and lighting in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and S. W. Nesbitt, 2018: Radar Meteorology, an Introduction. Wiley Blackwell, 461 pp.

    • Crossref
    • Export Citation
  • Repinaldo, H. F. B., M. Nicolini, and Y. G. Skabar, 2015: Characterizing the diurnal cycle of low-level circulation and convergence using CFSR data in southeastern South America. J. Appl. Meteor. Climatol., 54, 671690, https://doi.org/10.1175/JAMC-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribeiro, B. Z., and L. F. Bosart, 2018: Elevated mixed layers and associated severe thunderstorm environments in South and North America. Mon. Wea. Rev., 146, 328, https://doi.org/10.1175/MWR-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., M. E. Seluchi, and M. Nicolini, 2004: A case study of a Chaco low-level jet event. Mon. Wea. Rev., 132, 26692683, https://doi.org/10.1175/MWR2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulo, A. C., J. Ruiz, and Y. G. Skabar, 2007: Synergism between the low-level jet and organized convection at its exit region. Mon. Wea. Rev., 135, 13101326, https://doi.org/10.1175/MWR3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2014: The DOE ARM Aerial Facility. Bull. Amer. Meteor. Soc., 95, 723742, https://doi.org/10.1175/BAMS-D-13-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, M. R., and P. J. Roebber, 2010: The influence of upper-tropospheric potential vorticity on convective morphology. Mon. Wea. Rev., 138, 463474, https://doi.org/10.1175/2009MWR3091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, D. W., 1992: Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons, 336 pp.

    • Crossref
    • Export Citation
  • Seluchi, M. E., A. C. Saulo, M. Nicolini, and P. Satyamurty, 2003: The northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131, 23612378, https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 2013: Mesoscale-Convective Processes in the Atmosphere. Cambridge University Press, 346 pp.

    • Crossref
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, https://doi.org/10.1175/WAF-835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon. Wea. Rev., 108, 16891696, https://doi.org/10.1175/1520-0493(1980)108<1689:OTROUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American low-level jet experiment. Bull. Amer. Meteor. Soc., 87, 6378, https://doi.org/10.1175/BAMS-87-1-63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1485 484 25
PDF Downloads 1264 334 19