Predictability of Tropical Cyclone Intensity over the Western North Pacific Using the IBTrACS Dataset

Quanjia Zhong State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Quanjia Zhong in
Current site
Google Scholar
PubMed
Close
,
Jianping Li Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, and College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Lifeng Zhang College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

Search for other papers by Lifeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Ruiqiang Ding State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Ruiqiang Ding in
Current site
Google Scholar
PubMed
Close
, and
Baosheng Li State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Baosheng Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The predictability limits of tropical cyclone (TC) intensity over the western North Pacific (WNP) are investigated using TC best track data. The results show that the predictability limit of the TC minimum central pressure (MCP) is ~102 h, comparable to that of the TC maximum sustained wind (MSW). The spatial distribution of the predictability limit of the TC MCP over the WNP is similar to that of the TC MSW, and both gradually decrease from the eastern WNP (EWNP) to the South China Sea (SCS). The predictability limits of the TC MCP and MSW are relatively high over the southeastern WNP where the modified accumulated cyclone energy (MACE) is relatively large, whereas they are relatively low over the SCS where the MACE is relatively small. The spatial patterns of the TC lifetime and the lifetime maximum intensity (LMI) are similar to that of the TC MACE. Strong and long-lived TCs, which have relatively long predictability, mainly form in the southwestern WNP. In contrast, weak and short-lived TCs, which have relatively short predictability, mainly form in the SCS. In addition to the dependence of the predictability limit on genesis location, the predictability limits of TC intensity also evolve in the TC life cycle. The predictability limit of the TC MCP (MSW) gradually decreases from 102 (108) h at genesis time (00 h) to 54 (84) h 4 days after TC genesis.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ruiqiang Ding, drq@mail.iap.ac.cn

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

The predictability limits of tropical cyclone (TC) intensity over the western North Pacific (WNP) are investigated using TC best track data. The results show that the predictability limit of the TC minimum central pressure (MCP) is ~102 h, comparable to that of the TC maximum sustained wind (MSW). The spatial distribution of the predictability limit of the TC MCP over the WNP is similar to that of the TC MSW, and both gradually decrease from the eastern WNP (EWNP) to the South China Sea (SCS). The predictability limits of the TC MCP and MSW are relatively high over the southeastern WNP where the modified accumulated cyclone energy (MACE) is relatively large, whereas they are relatively low over the SCS where the MACE is relatively small. The spatial patterns of the TC lifetime and the lifetime maximum intensity (LMI) are similar to that of the TC MACE. Strong and long-lived TCs, which have relatively long predictability, mainly form in the southwestern WNP. In contrast, weak and short-lived TCs, which have relatively short predictability, mainly form in the SCS. In addition to the dependence of the predictability limit on genesis location, the predictability limits of TC intensity also evolve in the TC life cycle. The predictability limit of the TC MCP (MSW) gradually decreases from 102 (108) h at genesis time (00 h) to 54 (84) h 4 days after TC genesis.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Ruiqiang Ding, drq@mail.iap.ac.cn

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, B. R., and G. J. Hakim, 2013: Variability and predictability of a three-dimensional hurricane in statistical equilibrium. J. Atmos. Sci., 70, 18061820, https://doi.org/10.1175/JAS-D-12-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A, 589604, https://doi.org/10.3402/tellusa.v57i4.14705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B. H., J. P. Li, and R. Q. Ding, 2006: Nonlinear local Lyapunov exponent and atmospheric predictability research. Sci. China, 49D, 11111120, https://doi.org/10.1007/s11430-006-1111-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., and J. P. Li, 2007: Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett., 364A, 396400, https://doi.org/10.1016/j.physleta.2006.11.094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., G. L. Feng, S. D. Liu, S. K. Liu, S. X. Huang, and Z. T. Fu, 2007: Nonlinear atmospheric and climate dynamics in China (2003-2006): A review. Adv. Atmos. Sci., 24, 10771085, https://doi.org/10.1007/s00376-007-1077-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. P. Li, and K. H. Seo, 2010: Predictability of the Madden–Julian oscillation estimated using observational data. Mon. Wea. Rev., 138, 10041013, https://doi.org/10.1175/2009MWR3082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. P. Li, and K. H. Seo, 2011: Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon. Wea. Rev., 139, 24212438, https://doi.org/10.1175/2011MWR3571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R. Q., J. P. Li, F. Zheng, J. Feng, and D. Q. Liu, 2016: Estimating the limit of decadal-scale climate predictability using observational data. Climate Dyn., 46, 15631580, https://doi.org/10.1007/s00382-015-2662-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762, https://doi.org/10.1175/WAF1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and F. Q. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 37393747, https://doi.org/10.1175/JAS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., X. Zhang, J.-W. Bao, K.-S. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, https://doi.org/10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2011: The mean state of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 68, 13641376, https://doi.org/10.1175/2010JAS3644.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2013: The variability and predictability of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 70, 9931005, https://doi.org/10.1175/JAS-D-12-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2016: Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles. Mon. Wea. Rev., 144, 43954420, https://doi.org/10.1175/MWR-D-15-0413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., S. S. Chen, and J. Berner, 2016: Predictability of tropical cyclone intensity: Scale‐dependent forecast error growth in high‐resolution stochastic kinetic‐energy backscatter ensembles. Quart. J. Roy. Meteor. Soc., 142, 4357, https://doi.org/10.1002/qj.2626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and Z. Moon, 2016: Hurricane intensity predictability. Bull. Amer. Meteor. Soc., 97, 18471857, https://doi.org/10.1175/BAMS-D-15-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Wea. Rev., 138, 14591473, https://doi.org/10.1175/2009MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and R. Q. Ding, 2011: Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 32653283, https://doi.org/10.1175/MWR-D-10-05020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and R. Q. Ding, 2013: Temporal–spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int. J. Climatol., 33, 19361947, https://doi.org/10.1002/joc.3562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., W. Li, L. Chen, J. Zuo, and P. Zhang, 2016: Estimation of the monthly precipitation predictability limit in China using the nonlinear local Lyapunov exponent. J. Meteor. Res., 30, 93102, https://doi.org/10.1007/s13351-015-5049-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., A. Döring, and G. Seregin, 2014: The real butterfly effect. Nonlinearity, 27, R123, https://doi.org/10.1088/0951-7715/27/9/R123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., and Coauthors, 2016: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, https://doi.org/10.1175/BAMS-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea‐surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble‐mean perspective. J. Adv. Model. Earth Syst., 6, 384404, https://doi.org/10.1002/2014MS000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. J. Adv. Model. Earth Syst., 7, 15341553, https://doi.org/10.1002/2015MS000474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y., and F. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, https://doi.org/10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, https://doi.org/10.1175/JAS3971.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Y. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, https://doi.org/10.1175/BAMS-D-13-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Meng, F. Zhang, and Y. Weng, 2014: Predictability of tropical cyclone intensity evaluated through 5-yr forecasts with a convection-permitting regional-scale model in the Atlantic basin. Wea. Forecasting, 29, 10031023, https://doi.org/10.1175/WAF-D-13-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Q., L. Zhang, J. Li, R. Ding, and J. Feng, 2018: Estimating the predictability limit of tropical cyclone tracks over the western North Pacific using observational data. Adv. Atmos. Sci., in press, https://doi.org/10.1007/s00376-018-8008-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., and Coauthors, 2016: Prediction and predictability of high-impact western Pacific landfalling Tropical Cyclone Vicente (2012) through convection-permitting ensemble assimilation of Doppler radar velocity. Mon. Wea. Rev., 144, 2143, https://doi.org/10.1175/MWR-D-14-00403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7611 6828 3426
PDF Downloads 701 168 8