Characteristics of Size Change of Tropical Cyclones Traversing the Philippines

Shu-Jeng Lin Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan

Search for other papers by Shu-Jeng Lin in
Current site
Google Scholar
PubMed
Close
and
Kun-Hsuan Chou Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan

Search for other papers by Kun-Hsuan Chou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the size changes of tropical cyclones (TCs) traversing the Philippines based on a 37-yr statistical analysis. TC size is defined by the radius of 30-kt (≈15.4 m s−1) wind speed (R30) from the best track data of the Japan Meteorological Agency. A total of 71 TCs passed the Philippines during 1979–2015. The numbers of size increase (SI; 36) and size decrease (SD; 34) cases are very similar; however, the last 15 years have seen more SI cases (17) than SD cases (11). SI and SD cases mostly occur along northerly and southerly paths, respectively, after TCs pass the Philippines. Before landfall, SI cases have small initial sizes and weak intensities, but SD cases have larger initial sizes and stronger intensities. After landfall, most SI cases are intensifying storms, and most SD cases are nonintensifying storms. Composite analyses of vertical wind shear, absolute angular momentum flux, relative humidity, and sea surface temperature between SI and SD cases are compared. All of these values are larger in SI cases than in SD cases. Furthermore, the interdecadal difference in the ratio of the numbers of SI to SD cases reveals an unusually high number of SI cases during 2001–15. The synoptic patterns between 1979–2000 and 2001–15 are analyzed. The high SI ratio in the latter period is related to strong southwesterly wind in the south of the South China Sea that raised relative humidity, warmed the sea surface, and increased import of angular momentum flux.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun-Hsuan Chou, zkx@faculty.pccu.edu.tw

Abstract

This study investigates the size changes of tropical cyclones (TCs) traversing the Philippines based on a 37-yr statistical analysis. TC size is defined by the radius of 30-kt (≈15.4 m s−1) wind speed (R30) from the best track data of the Japan Meteorological Agency. A total of 71 TCs passed the Philippines during 1979–2015. The numbers of size increase (SI; 36) and size decrease (SD; 34) cases are very similar; however, the last 15 years have seen more SI cases (17) than SD cases (11). SI and SD cases mostly occur along northerly and southerly paths, respectively, after TCs pass the Philippines. Before landfall, SI cases have small initial sizes and weak intensities, but SD cases have larger initial sizes and stronger intensities. After landfall, most SI cases are intensifying storms, and most SD cases are nonintensifying storms. Composite analyses of vertical wind shear, absolute angular momentum flux, relative humidity, and sea surface temperature between SI and SD cases are compared. All of these values are larger in SI cases than in SD cases. Furthermore, the interdecadal difference in the ratio of the numbers of SI to SD cases reveals an unusually high number of SI cases during 2001–15. The synoptic patterns between 1979–2000 and 2001–15 are analyzed. The high SI ratio in the latter period is related to strong southwesterly wind in the south of the South China Sea that raised relative humidity, warmed the sea surface, and increased import of angular momentum flux.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun-Hsuan Chou, zkx@faculty.pccu.edu.tw
Save
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130155, https://doi.org/10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand, S., and J. W. Blelloch, 1973: Changes in the characteristics of typhoons crossing the Philippines. J. Appl. Meteor., 12, 104109, https://doi.org/10.1175/1520-0450(1973)012<0104:CITCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. K., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, https://doi.org/10.1175/MWR-D-10-05062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. K., and J. C. L. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 39854007, https://doi.org/10.1175/MWR-D-12-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. K., and J. C. L. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 22352248, https://doi.org/10.1002/qj.2292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T. K., and J. C. L. Chan, 2015: Impacts of vortex intensity and outer winds on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 141, 525537, https://doi.org/10.1002/qj.2374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, and Y. Wang, 2011: Eyewall evolution of typhoons crossing the Philippines and Taiwan: An observational study. Terr. Atmos. Ocean. Sci., 22, 535548, https://doi.org/10.3319/TAO.2011.05.10.01(TM).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 10061022, https://doi.org/10.1175/JAS-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational Statistical Typhoon Intensity Prediction Scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C.-S., K. K. Cheung, W.-T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223, https://doi.org/10.1175/2010MWR3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moyer, A. C., J. L. Evans, and M. Powell, 2007: Comparison of observed gale radius statistics. Meteor. Atmos. Phys., 97, 4155, https://doi.org/10.1007/s00703-006-0243-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., and H. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Miami, FL, Amer. Meteor. Soc., D4.1–D4.10.

  • Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 15781589, https://doi.org/10.1002/qj.2240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, C. K., and J. C. L. Chan, 2015: Idealized simulations of the effect of local and remote topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 141, 20452056, https://doi.org/10.1002/qj.2498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J.-Y., C. Chou, and P.-S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. J. Climate, 22, 36173628, https://doi.org/10.1175/2009JCLI2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 31723196, https://doi.org/10.1175/JAS-D-11-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K.-H. Chou, H.-J. Cheng, and Y. Wang, 2003: Eyewall contraction, breakdown and reformation in a landfalling typhoon. Geophys. Res. Lett., 30, 1887, https://doi.org/10.1029/2003GL017653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140, https://doi.org/10.1175/2008MWR2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., W. Tian, Q. Liu, J. Cao, and J. A. Knaff, 2015: Implications of the observed relationship between tropical cyclone size and intensity over the western North Pacific. J. Climate, 28, 95019506, https://doi.org/10.1175/JCLI-D-15-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1642 1082 359
PDF Downloads 681 86 12