On the Use of Cost-Effective Valid-Time-Shifting (VTS) Method to Increase Ensemble Size in the GFS Hybrid 4DEnVar System

Bo Huang School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Bo Huang in
Current site
Google Scholar
PubMed
Close
and
Xuguang Wang School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Valid-time-shifting (VTS) ensembles, either in the form of full ensemble members (VTSM) or ensemble perturbations (VTSP), were investigated as inexpensive means to increase ensemble size in the NCEP Global Forecast System (GFS) hybrid four-dimensional ensemble–variational (4DEnVar) data assimilation system. VTSM is designed to sample timing and/or phase errors, while VTSP can eliminate spurious covariances through temporal smoothing. When applying a shifting time interval (τ = 1, 2, or 3 h), VTSM and VTSP triple the baseline background ensemble size from 80 (ENS80) to 240 (ENS240) in the EnVar variational update, where the overall cost is only increased by 23%–27%, depending on the selected τ. Experiments during a 10-week summer period show the best-performing VTSP with τ = 2 h improves global temperature and wind forecasts out to 5 days over ENS80. This could be attributed to the improved background ensemble distribution, ensemble correlation accuracy, and increased effective rank in the populated background ensemble. VTSM generally degrades global forecasts in the troposphere. Improved global forecasts above 100 hPa by VTSM may benefit from the increased spread that alleviates the underdispersiveness of the original background ensemble at such levels. Both VTSM and VTSP improve tropical cyclone track forecasts over ENS80. Although VTSM and VTSP are much less expensive than directly running a 240-member background ensemble, owing to the improved ensemble covariances, the best-performing VTSP with τ = 1 h performs comparably or only slightly worse than ENS240. The best-performing VTSM with τ = 3 h even shows more accurate track forecasts than ENS240, likely contributed to by its better sampling of timing and/or phase errors for cases with small ensemble track spread.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu

Abstract

Valid-time-shifting (VTS) ensembles, either in the form of full ensemble members (VTSM) or ensemble perturbations (VTSP), were investigated as inexpensive means to increase ensemble size in the NCEP Global Forecast System (GFS) hybrid four-dimensional ensemble–variational (4DEnVar) data assimilation system. VTSM is designed to sample timing and/or phase errors, while VTSP can eliminate spurious covariances through temporal smoothing. When applying a shifting time interval (τ = 1, 2, or 3 h), VTSM and VTSP triple the baseline background ensemble size from 80 (ENS80) to 240 (ENS240) in the EnVar variational update, where the overall cost is only increased by 23%–27%, depending on the selected τ. Experiments during a 10-week summer period show the best-performing VTSP with τ = 2 h improves global temperature and wind forecasts out to 5 days over ENS80. This could be attributed to the improved background ensemble distribution, ensemble correlation accuracy, and increased effective rank in the populated background ensemble. VTSM generally degrades global forecasts in the troposphere. Improved global forecasts above 100 hPa by VTSM may benefit from the increased spread that alleviates the underdispersiveness of the original background ensemble at such levels. Both VTSM and VTSP improve tropical cyclone track forecasts over ENS80. Although VTSM and VTSP are much less expensive than directly running a 240-member background ensemble, owing to the improved ensemble covariances, the best-performing VTSP with τ = 1 h performs comparably or only slightly worse than ENS240. The best-performing VTSM with τ = 3 h even shows more accurate track forecasts than ENS240, likely contributed to by its better sampling of timing and/or phase errors for cases with small ensemble track spread.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuguang Wang, xuguang.wang@ou.edu
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111, https://doi.org/10.1111/j.1600-0870.2008.00372.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, https://doi.org/10.1002/qj.1899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonavita, M., E. Hólm, L. Isaksen, and M. Fisher, 2016: The evolution of the ECMWF hybrid data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 287303, https://doi.org/10.1002/qj.2652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., and Coauthors, 2017: Inflation and localization tests in the development of an ensemble of 4D-ensemble variational assimilations. Quart. J. Roy. Meteor. Soc., 143, 12801302, https://doi.org/10.1002/qj.3004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, https://doi.org/10.1256/qj.04.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Wea. Rev., 140, 617636, https://doi.org/10.1175/MWR-D-10-05052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and M. Charron, 2007: Spectral and spatial localization of background-error correlations for data assimilation. Quart. J. Roy. Meteor. Soc., 133, 615630, https://doi.org/10.1002/qj.50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes Geophys., 20, 669682, https://doi.org/10.5194/npg-20-669-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 25322559, https://doi.org/10.1175/MWR-D-14-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, https://doi.org/10.1002/qj.2054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, https://doi.org/10.1029/94JC00572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., J. Bojarova, and O. Vignes, 2014: A hybrid variational ensemble data assimilation for the High Resolution Limited Area Model (HIRLAM). Nonlinear Processes Geophys., 21, 303323, https://doi.org/10.5194/npg-21-303-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2006: Ensemble-based atmospheric data assimilation. Predictability of Weather and Climate, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 124–156.

    • Crossref
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, B., and X. Wang, 2013: Effects of sequential or simultaneous assimilation of observations and localization methods on the performance of the ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 139, 758770, https://doi.org/10.1002/qj.2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 44894532, https://doi.org/10.1175/MWR-D-15-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., X. Deng, H. L. Mitchell, S.-J. Baek, and N. Gagnon, 2014: Higher resolution in an operational ensemble Kalman filter. Mon. Wea. Rev., 142, 11431162, https://doi.org/10.1175/MWR-D-13-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452470, https://doi.org/10.1175/MWR-D-13-00350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, https://doi.org/10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., and Coauthors, 2007: Assessing predictability with a local ensemble Kalman filter. J. Atmos. Sci., 64, 11161140, https://doi.org/10.1175/JAS3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, https://doi.org/10.1175/MWR-D-12-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutty, G., and X. Wang, 2015: A comparison of the impacts of radiosonde and AMSU radiance observations in GSI based 3DEnsVar and 3DVar data assimilation systems for NCEP GFS. Adv. Meteor., 2015, 117, https://doi.org/10.1155/2015/280546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26052621, https://doi.org/10.1175/MWR-D-15-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2017: Evaluating the trade-offs between ensemble size and ensemble resolution in an ensemble-variational data assimilation system. J. Adv. Model. Earth Syst., 9, 781789, https://doi.org/10.1002/2016MS000864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, https://doi.org/10.1256/qj.02.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2017: Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size. Quart. J. Roy. Meteor. Soc., 143, 10621072, https://doi.org/10.1002/qj.2990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212229, https://doi.org/10.1175/MWR-D-14-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., H. Yuan, B. E. Schwartz, and S. G. Benjamin, 2007: Short-range numerical weather prediction using time-lagged ensembles. Wea. Forecasting, 22, 580595, https://doi.org/10.1175/WAF999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., Q. Xu, M. Yao, and S. Gao, 2011: Time-expanded sampling for ensemble-based filters: Assimilation experiments with real radar observations. Adv. Atmos. Sci., 28, 743757, https://doi.org/10.1007/s00376-010-0021-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchok, T., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13, http://ams.confex.com/ams/pdfpapers/37628.pdf.

  • Miyoshi, T., K. Kondo, and T. Imamura, 2014: The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 52645271, https://doi.org/10.1002/2014GL060863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oczkowski, M., I. Szunyogh, and D. J. Patil, 2005: Mechanisms for the development of locally low-dimensional atmospheric dynamics. J. Atmos. Sci., 62, 11351156, https://doi.org/10.1175/JAS3403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633653, https://doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp., http://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf.

  • Patil, D. J., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878, https://doi.org/10.1103/PhysRevLett.86.5878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., L. Berre, and G. Desroziers, 2008: Spatial averaging of ensemble‐based background‐error variances. Quart. J. Roy. Meteor. Soc., 134, 10031014, https://doi.org/10.1002/qj.245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynaud, L., L. Berre, and G. Desroziers, 2009: Objective filtering of ensemble-based background-error variances. Quart. J. Roy. Meteor. Soc., 135, 11771199, https://doi.org/10.1002/qj.438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D., and D. Paolino, 2008: Intermediate time error growth and predictability: Tropics versus mid-latitudes. Tellus, 61A, 579586, https://doi.org/10.1111/j.1600-0870.2009.00411.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., and L. Rukhovets, 1994: On the weights for an ensemble-averaged 6–10-day forecast. Wea. Forecasting, 9, 457465, https://doi.org/10.1175/1520-0434(1994)009<0457:OTWFAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2011: Application of the WRF hybrid ETKF–3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868884, https://doi.org/10.1175/WAF-D-10-05058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158, https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and T. Lei, 2014: GSI-based four-dimensional ensemble–variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP Global Forecast System. Mon. Wea. Rev., 142, 33033325, https://doi.org/10.1175/MWR-D-13-00303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 15901605, https://doi.org/10.1175/1520-0493(2004)132<1590:WIBAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2007a: A comparison of hybrid ensemble transform Kalman filter–optimum interpolation and ensemble square root filter analysis schemes. Mon. Wea. Rev., 135, 10551076, https://doi.org/10.1175/MWR3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007b: On the theoretical equivalence of differently proposed ensemble–3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222227, https://doi.org/10.1175/MWR3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147, https://doi.org/10.1175/2008MWR2445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, https://doi.org/10.1175/2008MWR2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model errors due to unresolved scales. Mon. Wea. Rev., 137, 32193232, https://doi.org/10.1175/2009MWR2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., L. Wei, H. Lu, C. Qiu, and Q. Zhao, 2008: Time-expanded sampling for ensemble-based filters: Assimilation experiments with a shallow-water equation model. J. Geophys. Res., 113, D02114, https://doi.org/10.1029/2007JG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., J. A. Jung, J. F. Le Marshall, and R. E. Treadon, 2008: A two-season impact study of four satellite data types and rawinsonde data in the NCEP Global Data Assimilation System. Wea. Forecasting, 23, 80100, https://doi.org/10.1175/2007WAF2007010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587600, https://doi.org/10.1175/MWR-D-11-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Q., Q. Xu, Y. Jin, J. McLay, and C. Reynolds, 2015: Time-expanded sampling for ensemble-based data assimilation applied to conventional and satellite observations. Wea. Forecasting, 30, 855872, https://doi.org/10.1175/WAF-D-14-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 14791492, https://doi.org/10.1002/qj.2233.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1238 635 224
PDF Downloads 437 90 4