Reintensification and Eyewall Formation in Strong Shear: A Case Study of Typhoon Noul (2015)

Udai Shimada Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by Udai Shimada in
Current site
Google Scholar
PubMed
Close
and
Takeshi Horinouchi Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan

Search for other papers by Takeshi Horinouchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Strong vertical wind shear produces asymmetries in the eyewall structure of a tropical cyclone (TC) and is generally a hostile environment for TC intensification. Typhoon Noul (2015), however, reintensified and formed a closed eyewall despite 200–850-hPa vertical shear in excess of 11 m s−1. Noul’s reintensification and eyewall formation in strong shear were examined by using Doppler radar and surface observations. The evolution of the azimuthal-mean structure showed that the tangential wind at 2-km altitude increased from 30 to 45 m s−1 in only 5 h. During the first half of the reintensification, the azimuthal-mean inflow penetrated into the ~40-km radius, well inside the radius of maximum wind (RMW), at least below 4-km altitude, and reflectivity inside the RMW increased. As for the asymmetric evolution, vigorous convection, dominated by an azimuthal wavenumber-1 asymmetry, occurred in the downshear-left quadrant when shear started to increase and then moved upshear. A mesovortex formed inside the convective asymmetry on the upshear side. The direction of vortex tilt between the 1- and 5-km altitudes rotated cyclonically from the downshear-left to the upshear-right quadrant as the vortex was vertically aligned. In conjunction with the alignment, the amplitude of the wavenumber-1 convective asymmetry decreased and a closed eyewall formed. These features are consistent with the theory that a vortex can be vertically aligned through upshear precession. The analysis results suggest that the vortex tilt, vigorous convection, and subsequent intensification were triggered by the increase in shear in a convectively favorable environment.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Udai Shimada, ushimada@mri-jma.go.jp

Abstract

Strong vertical wind shear produces asymmetries in the eyewall structure of a tropical cyclone (TC) and is generally a hostile environment for TC intensification. Typhoon Noul (2015), however, reintensified and formed a closed eyewall despite 200–850-hPa vertical shear in excess of 11 m s−1. Noul’s reintensification and eyewall formation in strong shear were examined by using Doppler radar and surface observations. The evolution of the azimuthal-mean structure showed that the tangential wind at 2-km altitude increased from 30 to 45 m s−1 in only 5 h. During the first half of the reintensification, the azimuthal-mean inflow penetrated into the ~40-km radius, well inside the radius of maximum wind (RMW), at least below 4-km altitude, and reflectivity inside the RMW increased. As for the asymmetric evolution, vigorous convection, dominated by an azimuthal wavenumber-1 asymmetry, occurred in the downshear-left quadrant when shear started to increase and then moved upshear. A mesovortex formed inside the convective asymmetry on the upshear side. The direction of vortex tilt between the 1- and 5-km altitudes rotated cyclonically from the downshear-left to the upshear-right quadrant as the vortex was vertically aligned. In conjunction with the alignment, the amplitude of the wavenumber-1 convective asymmetry decreased and a closed eyewall formed. These features are consistent with the theory that a vortex can be vertically aligned through upshear precession. The analysis results suggest that the vortex tilt, vigorous convection, and subsequent intensification were triggered by the increase in shear in a convectively favorable environment.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Udai Shimada, ushimada@mri-jma.go.jp
Save
  • Bell, M. M., and W. Lee, 2012: Objective tropical cyclone center tracking using single-Doppler radar. J. Appl. Meteor. Climatol., 51, 878896, https://doi.org/10.1175/JAMC-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724, https://doi.org/10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, https://doi.org/10.1175/MWR3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942, https://doi.org/10.1175/JAS3598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091, https://doi.org/10.1175/MWR3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, https://doi.org/10.1175/2007JAS2488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze, and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, https://doi.org/10.1175/2008MWR2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum flux and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, https://doi.org/10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, https://doi.org/10.1175/MWR-2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58, 685706, https://doi.org/10.1175/1520-0469(2001)058<0685:TCVCFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, P. D. Reasor, and A. C. Didlake, 2016: The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. J. Atmos. Sci., 73, 36173639, https://doi.org/10.1175/JAS-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harasti, P. R., C. J. McAdie, P. P. Dodge, W.-C. Lee, J. Tuttle, S. T. Murillo, and F. D. Marks, 2004: Real-time implementation of single-Doppler radar analysis methods for tropical cyclones: Algorithm improvements and use with WSR-88D display data. Wea. Forecasting, 19, 219239, https://doi.org/10.1175/1520-0434(2004)019<0219:RIOSRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2016: Annual report on the activities of the RSMC Tokyo-Typhoon Center. Japan Meteorological Agency, 103 pp., http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/AnnualReport/2015/Text/Text2015.pdf.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1932: Hydrodynamics. 6th ed. Dover, 732 pp.

  • Lee, W.-C., and F. D. Marks Jr., 2000: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part II: The GBVTD-simplex center finding algorithm. Mon. Wea. Rev., 128, 19251936, https://doi.org/10.1175/1520-0493(2000)128<1925:TCKSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Interpretation of Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev., 127, 24192439, https://doi.org/10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, https://doi.org/10.1175/2007MWR2073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and D. Nolan, 2018: Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations. J. Atmos. Sci., 75, 555569, https://doi.org/10.1175/JAS-D-17-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 19021918, https://doi.org/10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, https://doi.org/10.1175/2010MWR3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks, 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, https://doi.org/10.1175/JAS3591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murillo, S. T., W.-C. Lee, M. M. Bell, F. D. Marks Jr., P. P. Dodge, and G. M. Barnes, 2011: Intercomparison of Ground-Based Velocity Track Display (GBVTD)-retrieved circulation centers and structures of Hurricane Danny (1997) from two coastal WSR-88Ds. Mon. Wea. Rev., 139, 153174, https://doi.org/10.1175/2010MWR3036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, K. D., C. A. Davis, and M. T. Montgomery, 2008: Numerical simulations of the formation of Hurricane Gabrielle (2001). Mon. Wea. Rev., 136, 31513167, https://doi.org/10.1175/2007MWR2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378, https://doi.org/10.1175/MWR-D-11-00293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2015: Simulation of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 72, 45294551, https://doi.org/10.1175/JAS-D-15-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, https://doi.org/10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 36443660, https://doi.org/10.1175/MWR3041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirano, C. M., K. L. Corbosiero, and B. H. Tang, 2016: Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett., 43, 55095515, https://doi.org/10.1002/2016GL069040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, https://doi.org/10.1175/MWR-D-11-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci., 72, 17651782, https://doi.org/10.1175/JAS-D-14-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, https://doi.org/10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, https://doi.org/10.5194/acp-13-327-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., S. S. Chen, J. Tenerelli, and H. E. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599, https://doi.org/10.1175//2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. Reasor, and J. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. Zhang, J. Zawislak, H. Jiang, G. Alvey, E. Zipser, and S. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37, 5588, https://doi.org/10.1016/S0377-0265(03)00015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59, 150168, https://doi.org/10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., M. Sawada, and H. Yamada, 2016: Evaluation of the accuracy and utility of tropical cyclone intensity estimation using single ground-based Doppler radar observations. Mon. Wea. Rev., 144, 18231840, https://doi.org/10.1175/MWR-D-15-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., M. Sawada, and H. Yamada, 2018: Doppler radar analysis of the rapid intensification of Typhoon Goni (2015) after eyewall replacement. J. Atmos. Sci., 75, 143162, https://doi.org/10.1175/JAS-D-17-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and V. S. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, https://doi.org/10.1175/MWR-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susca-Lopata, G., J. Zawislak, E. J. Zipser, and R. F. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 22072223, https://doi.org/10.1175/MWR-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. A. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., 2007: Observational analysis and numerical evaluation of the effects of vertical wind shear on the rainfall asymmetry in the typhoon inner-core region. J. Meteor. Soc. Japan, 85, 115136, https://doi.org/10.2151/jmsj.85.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., 2008: Effects of ambient vertical wind shear on the inner-core asymmetries and vertical tilt of a simulated tropical cyclone. J. Meteor. Soc. Japan, 86, 531555, https://doi.org/10.2151/jmsj.86.531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: The beta drift of baroclinic vortices. Part I: Adiabatic vortices. J. Atmos. Sci., 53, 411427, https://doi.org/10.1175/1520-0469(1996)053<0411:TBDOBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Rao, Z.-M. Tan, and D. Schnemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 34343453, https://doi.org/10.1175/MWR-D-15-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586, https://doi.org/10.1175/JAS3597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, K., M. Xue, and W.-C. Lee, 2012: Assimilation of GBVTD-retrieved winds from single-Doppler radar for short-term forecasting of super typhoon Saomai (0608) at landfall. Quart. J. Roy. Meteor. Soc., 138, 10551071, https://doi.org/10.1002/qj.975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225241, https://doi.org/10.1175/1520-0493(2004)132<0225:NSOHBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1452 1099 319
PDF Downloads 413 87 6