Adjoint-Based Observation Impact Estimation with Direct Verification Using Forward Calculation

Toshiyuki Ishibashi Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

Search for other papers by Toshiyuki Ishibashi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The adjoint-based observation impact estimation method has been providing essential information to improve data assimilation systems (DASs) in numerical weather prediction (NWP). This paper has two purposes. The first is to verify the four approximations used in the method: iterative construction of the Kalman gain adjoint operator, the tangent linear (TL) approximation of a forecast model, ignoring cross terms of observation impacts, and approximations for incremental DASs. The second is to add new information to our knowledge of observation impacts. For the verification of the adjoint-based method, we use the TL-based observation impact estimation method that can calculate the same quantity as the adjoint-based method without adjoint calculations. Results of these verifications and observation impact estimations performed on the global NWP system of the Japan Meteorological Agency are as follows. First, observation impacts calculated using the adjoint-based method agree well with those from the TL-based method, with the correlation coefficient between them exceeding 0.97. Second, estimated observation impacts are consistent with previous studies in many aspects. There are also system-dependent properties, such as relatively small impacts from GPS radio occultation data above 13 km. Furthermore, new aspects of observation impacts are found: 1) the probability density function of the observation impact agrees well with the scalar theory when giving the experimental value of the observation and the forecast error standard deviations; 2) later observations in the data assimilation window have larger positive impacts; and 3) impacts of AMSU-A in the Southern Hemisphere are more than double those in the Northern Hemisphere.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Ishibashi, ishibasi@mri-jma.go.jp

Abstract

The adjoint-based observation impact estimation method has been providing essential information to improve data assimilation systems (DASs) in numerical weather prediction (NWP). This paper has two purposes. The first is to verify the four approximations used in the method: iterative construction of the Kalman gain adjoint operator, the tangent linear (TL) approximation of a forecast model, ignoring cross terms of observation impacts, and approximations for incremental DASs. The second is to add new information to our knowledge of observation impacts. For the verification of the adjoint-based method, we use the TL-based observation impact estimation method that can calculate the same quantity as the adjoint-based method without adjoint calculations. Results of these verifications and observation impact estimations performed on the global NWP system of the Japan Meteorological Agency are as follows. First, observation impacts calculated using the adjoint-based method agree well with those from the TL-based method, with the correlation coefficient between them exceeding 0.97. Second, estimated observation impacts are consistent with previous studies in many aspects. There are also system-dependent properties, such as relatively small impacts from GPS radio occultation data above 13 km. Furthermore, new aspects of observation impacts are found: 1) the probability density function of the observation impact agrees well with the scalar theory when giving the experimental value of the observation and the forecast error standard deviations; 2) later observations in the data assimilation window have larger positive impacts; and 3) impacts of AMSU-A in the Southern Hemisphere are more than double those in the Northern Hemisphere.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Ishibashi, ishibasi@mri-jma.go.jp
Save
  • Baker, N. L., and R. Daley, 2000: Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Quart. J. Roy. Meteor. Soc., 126, 14311454, https://doi.org/10.1002/qj.49712656511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., and P. Bauer, 2010: Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. Quart. J. Roy. Meteor. Soc., 136, 10361050, https://doi.org/10.1002/qj.616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Quart. J. Roy. Meteor. Soc., 142, 17671780, https://doi.org/10.1002/qj.2774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009a: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239250, https://doi.org/10.1002/qj.366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009b: Forecast sensitivity to observation (FSO) as a diagnostic tool. ECMWF Tech. Memo. 599, 26 pp.

  • Cardinali, C., and S. Healy, 2014: Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics. Quart. J. Roy. Meteor. Soc., 140, 23152320, https://doi.org/10.1002/qj.2300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, https://doi.org/10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., 2008: On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation. Mon. Wea. Rev., 136, 30503065, https://doi.org/10.1175/2007MWR2382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., and R. Todling, 2009: Adjoint estimation of the variation in model functional output due to the assimilation of data. Mon. Wea. Rev., 137, 17051716, https://doi.org/10.1175/2008MWR2659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., and R. Todling, 2010: Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Quart. J. Roy. Meteor. Soc., 136, 20002012, https://doi.org/10.1002/qj.693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., and R. H. Langland, 2013: Error covariance sensitivity and impact estimation with adjoint 4D-Var: Theoretical aspects and first applications to NAVDAS-AR. Quart. J. Roy. Meteor. Soc., 139, 226241, https://doi.org/10.1002/qj.1943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, R., and R. Ménard, 1993: Spectral characteristics of Kalman filter systems for atmospheric data assimilation. Mon. Wea. Rev., 121, 15541565, https://doi.org/10.1175/1520-0493(1993)121<1554:SCOKFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Proc. ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 97–112.

  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., 1986: The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion. Dover Publications, 617 pp.

  • Ehrendorfer, M., 2007: A review of issues in ensemble-based Kalman filtering. Meteor. Z., 16, 795818, https://doi.org/10.1127/0941-2948/2007/0256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., R. Errico, and K. Raeder, 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 16271648, https://doi.org/10.1175/1520-0469(1999)056<1627:SVPGIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 2007: Interpretations of an adjoint-derived observational impact measure. Tellus, 59A, 273276, https://doi.org/10.1111/j.1600-0870.2006.00217.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fourrié, N., A. Doerenbecher, T. Bergot, and A. Joly, 2002: Adjoint sensitivity of the forecast to TOVS observations. Quart. J. Roy. Meteor. Soc., 128, 27592777, https://doi.org/10.1256/qj.01.167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geer, A. J., and Coauthors, 2017: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3202, in press.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Y. Zhu, 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179193, https://doi.org/10.1111/j.1600-0870.2008.00388.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., Y. Zhu, and R. M. Errico, 2007: Examination of various-order adjoint-based approximations of observation impact. Meteor. Z., 16, 685692, https://doi.org/10.1127/0941-2948/2007/0248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138, 40094025, https://doi.org/10.1175/2010MWR3393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greiner, W., L. Neise, and H. Stöker, 1995: Thermodynamics and Statistical Mechanics. Springer, 480 pp.

    • Crossref
    • Export Citation
  • Ishibashi, T., 2010: Optimization of error covariance matrices and estimation of observation data impact in the JMA global 4D-Var system. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, 40, 1.11–1.12.

  • Ishibashi, T., 2011: Tangent linear approximation based observation data impact estimation in 4D-Var. Quart. J. Roy. Meteor. Soc., 137, 18981912, https://doi.org/10.1002/qj.871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2013: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Tech. Progress Rep. on the global data-processing and forecasting system and numerical weather prediction, 188 pp., http://www.jma.go.jp/jma/jma-eng/jma-centre/nwp/outline2013-nwp/index.htm.

  • Klinker, E., F. Rabier, and R. Gelaro, 1998: Estimation of key analysis errors using the adjoint technique. Quart. J. Roy. Meteor. Soc., 124, 19091933, https://doi.org/10.1002/qj.49712455007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, https://doi.org/10.1111/j.1600-0870.2004.00056.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, H., J. Liu, and E. Kalnay, 2010: Correction of ‘Estimating observation impact without adjoint model in an ensemble Kalman filter.’ Quart. J. Roy. Meteor. Soc., 136, 16521654, https://doi.org/10.1002/qj.658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 134, 13271335, https://doi.org/10.1002/qj.280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and R. T. Marriott, 2014: Forecast sensitivity to observations in the Met Office global numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 140, 209240, https://doi.org/10.1002/qj.2122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupu, C., C. Cardinali, and A. P. McNally, 2015: Adjoint-based forecast sensitivity applied to observation-error variance tuning. Quart. J. Roy. Meteor. Soc., 141, 31573165, https://doi.org/10.1002/qj.2599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okagaki, A., 2015: Assimilation of IASI and AIRS radiances at JMA. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, 45, 1.17–1.18.

  • Trémolet, Y., 2007: First-order and higher-order approximations of observation impact. Meteor. Z., 16, 693694, https://doi.org/10.1127/0941-2948/2007/0258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trémolet, Y., 2008: Computation of observation sensitivity and observation impact in incremental variational data assimilation. Tellus, 60A, 964978, https://doi.org/10.1111/j.1600-0870.2008.00349.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. Gelaro, 2008: Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon. Wea. Rev., 136, 335351, https://doi.org/10.1175/MWR3525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 592 322 70
PDF Downloads 283 64 1