The Multilevel Monte Carlo Method for Simulations of Turbulent Flows

Qingshan Chen Department of Mathematical Sciences, Clemson University, Clemson, South Carolina

Search for other papers by Qingshan Chen in
Current site
Google Scholar
PubMed
Close
and
Ju Ming School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China

Search for other papers by Ju Ming in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, the application of the multilevel Monte Carlo (MLMC) method to numerical simulations of turbulent flows with uncertain parameters is investigated. Several strategies for setting up the MLMC method are presented, and the advantages and disadvantages of each strategy are also discussed. A numerical experiment is carried out using an idealized model for the Antarctic Circumpolar Current (ACC) with uncertain, small-scale bottom topographic features. It is demonstrated that unlike the pointwise solutions, the averaged volume transports are correlated across grid resolutions, and the MLMC method can increase simulation efficiency without losing accuracy in uncertainty assessments.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ju Ming, jming@hust.edu.cn

Abstract

In this paper, the application of the multilevel Monte Carlo (MLMC) method to numerical simulations of turbulent flows with uncertain parameters is investigated. Several strategies for setting up the MLMC method are presented, and the advantages and disadvantages of each strategy are also discussed. A numerical experiment is carried out using an idealized model for the Antarctic Circumpolar Current (ACC) with uncertain, small-scale bottom topographic features. It is demonstrated that unlike the pointwise solutions, the averaged volume transports are correlated across grid resolutions, and the MLMC method can increase simulation efficiency without losing accuracy in uncertainty assessments.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ju Ming, jming@hust.edu.cn
Save
  • Barth, A., C. Schwab, and N. Zollinger, 2011: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math., 119, 123161, https://doi.org/10.1007/s00211-011-0377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. P. Marshall, A. Naveira-Garabato, and A. J. George Nurser, 2015: The seasonal cycle of submesoscale flows. Ocean Modell., 92, 6984, https://doi.org/10.1016/j.ocemod.2015.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bugallo, M. F., L. Martino, and J. Corander, 2015: Adaptive importance sampling in signal processing. Digital Signal Process., 47, 3649, https://doi.org/10.1016/j.dsp.2015.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., T. Ringler, and M. Gunzburger, 2013: A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids. J. Comput. Phys., 240, 174197, https://doi.org/10.1016/j.jcp.2013.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., T. Ringler, and P. R. Gent, 2016: Extending a potential vorticity transport eddy closure to include a spatially-varying coefficient. Comput. Math. Appl., 71, 22062217, https://doi.org/10.1016/j.camwa.2015.12.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., J. McWilliams, and P. Gent, 1994: The role of mesoscale tracer transports in the global ocean circulation. Science, 264, 11231126, https://doi.org/10.1126/science.264.5162.1123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dick, J., F. Y. Kuo, and I. H. Sloan, 2013: High-dimensional integration: The quasi-Monte Carlo way. Acta Numer., 22, 133288, https://doi.org/10.1017/S0962492913000044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Q., V. Faber, and M. Gunzburger, 1999: Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev., 41, 637676, https://doi.org/10.1137/S0036144599352836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Q., M. D. Gunzburger, and L. Ju, 2003: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput., 24, 14881506, https://doi.org/10.1137/S1064827501391576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 312 pp.

    • Crossref
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., W. G. Large, and F. O. Bryan, 2001: What sets the mean transport through Drake Passage? J. Geophys. Res., 106, 26932712, https://doi.org/10.1029/2000JC900036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, M. B., 2008: Multilevel Monte Carlo path simulation. Oper. Res., 56, 607617, https://doi.org/10.1287/opre.1070.0496.

  • Giles, M. B., 2015: Multilevel Monte Carlo methods. Acta Numer., 24, 259328, https://doi.org/10.1017/S096249291500001X.

  • Hammersley, J. M., and D. C. Handscomb, 1964: Monte Carlo Methods. Springer, 178 pp.

    • Crossref
    • Export Citation
  • Heinrich, S., 2001: Multilevel Monte Carlo methods. Large-Scale Scientific Computing, S. Margenov, J. Waśniewski, and P. Yalamov, Eds., Lecture Notes in Computer Science Series, Vol. 2179, Springer, 58–67, https://doi.org/10.1007/3-540-45346-6_5.

    • Crossref
    • Export Citation
  • Holland, W. R., 2010: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8, 363392, https://doi.org/10.1175/1520-0485(1978)008<0363:TROMEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holm, D. D., 1999: Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion. Physica D, 133, 215269, https://doi.org/10.1016/S0167-2789(99)00093-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., M. P. Meredith, and K. J. Heywood, 1999: Wind-driven transport fluctuations through Drake Passage: A southern mode. J. Phys. Oceanogr., 29, 19711992, https://doi.org/10.1175/1520-0485(1999)029<1971:WDTFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kebaier, A., 2005: Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing. Ann. Appl. Probab., 15, 26812705, https://doi.org/10.1214/105051605000000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenney, F., and E. S. Keeping, 1951: Mathematics of Statistics: Part Two. Van Nostrand Reinhold Company, 429 pp.

  • Kornhuber, R., C. Schwab, and M.-W. Wolf, 2014: Multilevel Monte Carlo finite element methods for stochastic elliptic variational inequalities. SIAM J. Numer. Anal., 52, 12431268, https://doi.org/10.1137/130916126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, F. Y., C. Schwab, and I. H. Sloan, 2012: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal., 50, 33513374, https://doi.org/10.1137/110845537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A. M. Treguier, 2001: Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, https://doi.org/10.1357/002224001762842181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., R. Ferrari, P. J. S. Franks, A. P. Martin, and P. Rivière, 2012: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., X. Wang, and K. Zhang, 2016: Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients. Appl. Math. Comput., 275, 181194, https://doi.org/10.1016/j.amc.2015.11.064.

    • Search Google Scholar
    • Export Citation
  • Liu, J. S., 2001: Monte Carlo Strategies in Scientific Computing. Springer, 343 pp.

  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, https://doi.org/10.1029/RG023i002p00165.

  • McWilliams, J. C., and J. H. S. Chow, 1981: Equilibrium geostrophic turbulence I: A reference solution in a β-plane channel. J. Phys. Oceanogr., 11, 921949, https://doi.org/10.1175/1520-0485(1981)011<0921:EGTIAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metropolis, N., and S. Ulam, 1949: The Monte Carlo method. J. Amer. Stat. Assoc., 44, 335341, https://doi.org/10.1080/01621459.1949.10483310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S., and C. Schwab, 2012: Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput., 81, 19792018, https://doi.org/10.1090/S0025-5718-2012-02574-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S., C. Schwab, and J. Šukys, 2012a: Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. J. Comput. Phys., 231, 33653388, https://doi.org/10.1016/j.jcp.2012.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S., C. Schwab, and J. Šukys, 2012b: Multilevel Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions. SIAM J. Sci. Comput., 34, B761B784, https://doi.org/10.1137/110857295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S., C. Schwab, and J. Šukys, 2016: Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium. J. Comput. Phys., 312, 192217, https://doi.org/10.1016/j.jcp.2016.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niederreiter, H., 1993: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, 241 pp.

    • Crossref
    • Export Citation
  • Ringler, T. D., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, https://doi.org/10.1016/j.jcp.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud, 2013: A multi-resolution approach to global ocean modeling. Ocean Modell., 69, 211232, https://doi.org/10.1016/j.ocemod.2013.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., and C. Basdevant, 1985: Parameterization of subgrid scale barotropic and baroclinic eddies in quasi-geostrophic models: Anticipated potential vorticity method. J. Atmos. Sci., 42, 13531363, https://doi.org/10.1175/1520-0469(1985)042<1353:POSSBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

    • Crossref
    • Export Citation
  • Thuburn, J., T. Ringler, W. Skamarock, and J. Klemp, 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys., 228, 83218335, https://doi.org/10.1016/j.jcp.2009.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A., and J. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the circumpolar current. J. Phys. Oceanogr., 26, 22972301, https://doi.org/10.1175/1520-0485(1996)026<2297:OTOPOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesseling, P., 1992: An Introduction to Multigrid Methods. John Wiley & Sons, 284 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1503 825 256
PDF Downloads 483 79 6