Evaluation of Forecasts of a Convectively Generated Bore Using an Intensively Observed Case Study from PECAN

Aaron Johnson School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Aaron Johnson in
Current site
Google Scholar
PubMed
Close
,
Xuguang Wang School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
,
Kevin R. Haghi School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Kevin R. Haghi in
Current site
Google Scholar
PubMed
Close
, and
David B. Parsons School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Parsons in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a case study from an intensive observing period (IOP) during the Plains Elevated Convection at Night (PECAN) field experiment that was focused on a bore generated by nocturnal convection. Observations from PECAN IOP 25 on 11 July 2015 are used to evaluate the performance of high-resolution Weather Research and Forecasting Model forecasts, initialized using the Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter. The focus is on understanding model errors and sensitivities in order to guide forecast improvements for bores associated with nocturnal convection. Model simulations of the bore amplitude are compared against eight retrieved vertical cross sections through the bore during the IOP. Sensitivities of forecasts to microphysics and planetary boundary layer (PBL) parameterizations are also investigated. Forecasts initialized before the bore pulls away from the convection show a more realistic bore than forecasts initialized later from analyses of the bore itself, in part due to the smoothing of the existing bore in the ensemble mean. Experiments show that the different microphysics schemes impact the quality of the simulations with unrealistically weak cold pools and bores with the Thompson and Morrison microphysics schemes, cold pools too strong with the WDM6 and more accurate with the WSM6 schemes. Most PBL schemes produced a realistic bore response to the cold pool, with the exception of the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, which creates too much turbulent mixing atop the bore. A new method of objectively estimating the depth of the near-surface stable layer corresponding to a simple two-layer model is also introduced, and the impacts of turbulent mixing on this estimate are discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Aaron Johnson, ajohns14@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

This paper presents a case study from an intensive observing period (IOP) during the Plains Elevated Convection at Night (PECAN) field experiment that was focused on a bore generated by nocturnal convection. Observations from PECAN IOP 25 on 11 July 2015 are used to evaluate the performance of high-resolution Weather Research and Forecasting Model forecasts, initialized using the Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter. The focus is on understanding model errors and sensitivities in order to guide forecast improvements for bores associated with nocturnal convection. Model simulations of the bore amplitude are compared against eight retrieved vertical cross sections through the bore during the IOP. Sensitivities of forecasts to microphysics and planetary boundary layer (PBL) parameterizations are also investigated. Forecasts initialized before the bore pulls away from the convection show a more realistic bore than forecasts initialized later from analyses of the bore itself, in part due to the smoothing of the existing bore in the ensemble mean. Experiments show that the different microphysics schemes impact the quality of the simulations with unrealistically weak cold pools and bores with the Thompson and Morrison microphysics schemes, cold pools too strong with the WDM6 and more accurate with the WSM6 schemes. Most PBL schemes produced a realistic bore response to the cold pool, with the exception of the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, which creates too much turbulent mixing atop the bore. A new method of objectively estimating the depth of the near-surface stable layer corresponding to a simple two-layer model is also introduced, and the impacts of turbulent mixing on this estimate are discussed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Aaron Johnson, ajohns14@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save
  • Baines, P. G., 1984: A unified description of two-layer flow over topography. J. Fluid Mech., 146, 127167, https://doi.org/10.1017/S0022112084001798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and P. A. Davies, 1980: Laboratory studies of topographic effects in rotating and/or stratified fluids. Orographic Effects in Planetary Flows, GARP Publications Series, Issue 23, WMO, 233–299.

  • Blake, B. T., D. B. Parsons, K. R. Haghi, and S. G. Castleberry, 2017: The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW Model. Mon. Wea. Rev., 145, 31793201, https://doi.org/10.1175/MWR-D-16-0360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, D. R., 1989: Long nonlinear waves in the lower atmosphere. J. Atmos. Sci., 46, 14621491, https://doi.org/10.1175/1520-0469(1989)046<1462:LNWITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and K. R. Knupp, 2011: Radiometer and profiler analysis of the effects of a bore and a solitary wave on the stability of the nocturnal boundary layer. Mon. Wea. Rev., 139, 211223, https://doi.org/10.1175/2010MWR3376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1986: The effect of ambient stratification and moisture on the motion of atmospheric undular bores. J. Atmos. Sci., 43, 171181, https://doi.org/10.1175/1520-0469(1986)043<0171:TEOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. J. Miller, 1985: A numerical and analytical study of atmospheric undular bores. Quart. J. Roy. Meteor. Soc., 111, 225242, https://doi.org/10.1002/qj.49711146710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., K. W. Manning, R. E. Carbone, S. B. Trier, and J. D. Tuttle, 2003: Coherence of warm-season continental rainfall in numerical weather prediction models. Mon. Wea. Rev., 131, 26672679, https://doi.org/10.1175/1520-0493(2003)131<2667:COWCRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T. II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and Coauthors, 2016: NASA DC-8 LASE data. Version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2016, https://doi.org/10.5065/D69C6VM6.

    • Crossref
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night (PECAN) field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., and D. Turner, 2016: FP3 University of Manitoba Doppler lidar wind profile data. Version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 5 January 2017, https://doi.org/10.5065/D60863P5.

    • Crossref
    • Export Citation
  • Hartung, D. C., J. A. Otkin, J. E. Martin, and D. D. Turner, 2010: The life cycle of an undular bore and its interaction with a shallow, intense cold front. Mon. Wea. Rev., 138, 886908, https://doi.org/10.1175/2009MWR3028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289315, https://doi.org/10.1175/WAF-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 30873108, https://doi.org/10.1175/MWR-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, and S. Degelia, 2017: Design and implementation of a GSI-based convection-allowing ensemble-based data assimilation and forecast system for the PECAN field experiment. Part II: Overview and evaluation of a real-time system. Wea. Forecasting, 32, 12271251, https://doi.org/10.1175/WAF-D-16-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. Part II: Evolution of a prefrontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123, 14231446, https://doi.org/10.1175/1520-0493(1995)123<1423:TIOTRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and N. A. Crook, 2003: An observational study of atmospheric bore formation from colliding density currents. Mon. Wea. Rev., 131, 29853002, https://doi.org/10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. Rotunno, and W. C. Skamarock, 1997: On the propagation of internal bores. J. Fluid Mech., 331, 81106, https://doi.org/10.1017/S0022112096003710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, https://doi.org/10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K., and R. Wade, 2016: MP2 UAH MIPS Doppler lidar data. Version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 5 January 2017, https://doi.org/10.5065/D66971TQ.

    • Crossref
    • Export Citation
  • Koch, S. E., and W. L. Clark, 1999: A nonclassical cold front observed during COPS-91: Frontal structure and the process of severe storm initiation. J. Atmos. Sci., 56, 28622890, https://doi.org/10.1175/1520-0469(1999)056<2862:ANCFOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., W. Feltz, F. Fabry, M. Pagowski, B. Geerts, K. M. Bedka, D. O. Miller, and J. W. Wilson, 2008a: Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulation. Mon. Wea. Rev., 136, 13731400, https://doi.org/10.1175/2007MWR2252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., C. Flamant, J. W. Wilson, B. M. Gentry, and B. D. Jamison, 2008b: An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar. J. Atmos. Oceanic Technol., 25, 12671287, https://doi.org/10.1175/2007JTECHA951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. J. Stumpf, 2007a: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol, 46, 288305, https://doi.org/10.1175/JAM2460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007b: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., J. Zhang, and K. Howard, 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 453462, https://doi.org/10.1175/2009JAMC2255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2014: Objectively determined fair-weather NBL features in ARW-WRF and their comparison to CASES-97 observations. Mon. Wea. Rev., 142, 27092732, https://doi.org/10.1175/MWR-D-13-00358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617, https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2000: Simulated density currents in idealized stratified environments. Mon. Wea. Rev., 128, 14201437, https://doi.org/10.1175/1520-0493(2000)128<1420:SDCIIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017: GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, W. J., and A. Shapiro, 2007: Discrimination of bird and insect radar echoes in clear air using high-resolution radars. J. Atmos. Oceanic Technol., 24, 12151230, https://doi.org/10.1175/JTECH2038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1980: On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid Mech., 96, 4764, https://doi.org/10.1017/S0022112080002017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, E. A., and R. P. Larkin, 1985: Insects observed using dual-polarization radar. J. Atmos. Oceanic Technol., 2, 4954, https://doi.org/10.1175/1520-0426(1985)002<0049:IOUDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

  • Parsons, D. B., K. Haghi, K. Halbert, B. Elmer, and J. Wang, 2018: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-17-0172.1, in press.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., P. N. Schumacher, and C. A. Doswell III, 2000: The intricacies of instabilities. Mon. Wea. Rev., 128, 41434148, https://doi.org/10.1175/1520-0493(2000)129<4143:TIOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1982: Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech., 14, 213234, https://doi.org/10.1146/annurev.fl.14.010182.001241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Smith, E. N., J. Gibbs, E. Fedorovich, and T. A. Bonin, 2016: WRF Model study of the Great Plains low-level jet: Effects of grid spacing and boundary layer parameterization. 22nd Symp. on Boundary Layers and Turbulence, Salt Lake City, UT, Amer. Meteor. Soc., 14B.1, https://ams.confex.com/ams/32AgF22BLT3BG/webprogram/Paper294866.html.

  • Smith, R. K., N. Crook, and G. Roff, 1982: The morning glory: An extraordinary atmospheric undular bore. Quart. J. Roy. Meteor. Soc., 108, 937956, https://doi.org/10.1002/qj.49710845813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, https://doi.org/10.1007/s10546-004-6848-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Surcel, M., M. Berenguer, and I. Zawadzki, 2010: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part I: Methodology and seasonal comparison. Mon. Wea. Rev., 138, 30843106, https://doi.org/10.1175/2010MWR3125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., W. F. Feltz, and M. Xue, 2008: Observations and numerical simulations of upper boundary layer rapid drying and moistening events during the International H2O Project (IHOP_2002). Mon. Wea. Rev., 136, 31063120, https://doi.org/10.1175/2008MWR2204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., J. M. Tomaszewski, D. D. Turner, and S. E. Koch, 2017: Analysis of a lower-tropospheric gravity wave train using direct and remote sensing measurement systems. Mon. Wea. Rev., 145, 27912812, https://doi.org/10.1175/MWR-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2016: FP3 AERIoe thermodynamic profile retrieval data. Version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 5 January 2017, http://doi.org/10.5065/D6Z31WV0.

    • Crossref
    • Export Citation
  • Turner, D. D., 2017: MP1 OU/NSSL CLAMPS AERIoe thermodynamic profile retrieval data. Version 1.1. UCAR/NCAR–Earth Observing Laboratory, accessed 5 January 2017, https://doi.org/10.5065/D6VQ312C.

    • Crossref
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T., and Coauthors, 2016: MP3 University of Wisconsin SPARC AERIoe thermodynamic profile data. Version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2016, https://doi.org/10.5065/D60Z71HC.

    • Crossref
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2016: University of Wyoming King Air Compact Raman lidar data. Version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 1 June 2016, https://doi.org/10.5065/D6MS3R0P.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10963 10024 4421
PDF Downloads 391 91 21