Observations and Predictability of a Nondeveloping Tropical Disturbance over the Eastern Atlantic

Alan Brammer Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Alan Brammer in
Current site
Google Scholar
PubMed
Close
,
Chris D. Thorncroft Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Chris D. Thorncroft in
Current site
Google Scholar
PubMed
Close
, and
Jason P. Dunion NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Jason P. Dunion in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A strong African easterly wave (AEW) left the West African coast in early September 2014 and operational global numerical forecasts suggested a potential for rapid tropical cyclogenesis of this disturbance in the eastern Atlantic, despite the presence of a large region of dry air northwest of the disturbance. Analysis and in situ observations show that after leaving the coast, the closed circulation associated with the AEW trough was not well aligned vertically, and therefore, low-level or midlevel dry air was advected below or above, respectively, areas of closed circulation. GPS dropwindsonde observations highlight the dry air undercutting the midlevel recirculation region in the southwestern quadrant. This advection of dry air constrains the spatial extent of deep convection within the AEW trough, leading to the vortex decaying. As the column continues to be displaced horizontally, losing vertical alignment, this enables increased horizontal advection of dry air into the system further limiting convective activity. Ensemble forecasts indicate that short-term errors in precipitation rate and vorticity generation can lead to an over intensified and well-aligned vortex, which then interacts less with the unfavorable environment, allowing for further convection and intensification. The stronger vortex provides more favorable conditions for precipitation through a more vertically coherent closed circulation and thus a positive feedback loop is initiated. The short-term forecasts of precipitation were shown to be sensitive to lower-tropospheric moisture anomalies around the AEW trough through ensemble sensitivity analysis from Global Ensemble Forecast System real-time forecasts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Brammer, abrammer@albany.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Abstract

A strong African easterly wave (AEW) left the West African coast in early September 2014 and operational global numerical forecasts suggested a potential for rapid tropical cyclogenesis of this disturbance in the eastern Atlantic, despite the presence of a large region of dry air northwest of the disturbance. Analysis and in situ observations show that after leaving the coast, the closed circulation associated with the AEW trough was not well aligned vertically, and therefore, low-level or midlevel dry air was advected below or above, respectively, areas of closed circulation. GPS dropwindsonde observations highlight the dry air undercutting the midlevel recirculation region in the southwestern quadrant. This advection of dry air constrains the spatial extent of deep convection within the AEW trough, leading to the vortex decaying. As the column continues to be displaced horizontally, losing vertical alignment, this enables increased horizontal advection of dry air into the system further limiting convective activity. Ensemble forecasts indicate that short-term errors in precipitation rate and vorticity generation can lead to an over intensified and well-aligned vortex, which then interacts less with the unfavorable environment, allowing for further convection and intensification. The stronger vortex provides more favorable conditions for precipitation through a more vertically coherent closed circulation and thus a positive feedback loop is initiated. The short-term forecasts of precipitation were shown to be sensitive to lower-tropospheric moisture anomalies around the AEW trough through ensemble sensitivity analysis from Global Ensemble Forecast System real-time forecasts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Brammer, abrammer@albany.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Save
  • Arnault, J., and F. Roux, 2009: Case study of a developing African easterly wave during NAMMA: An energetic point of view. J. Atmos. Sci., 66, 29913020, https://doi.org/10.1175/2009JAS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnault, J., and F. Roux, 2010: Comparison between two case studies of developing and nondeveloping African easterly waves during NAMMA and AMMA/SOP-3: Absolute vertical vorticity budget. Mon. Wea. Rev., 138, 14201445, https://doi.org/10.1175/2009MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, https://doi.org/10.1175/MWR2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, https://doi.org/10.1175/JAS-D-11-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, https://doi.org/10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. D. Thorncroft, 2015: Variability and evolution of African easterly wave structures and their relationship with tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 143, 49754995, https://doi.org/10.1175/MWR-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. D. Thorncroft, 2017: Spatial and temporal variability of the three- dimensional flow around African easterly waves. Mon. Wea. Rev., 145, 28792895, https://doi.org/10.1175/MWR-D-16-0454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, https://doi.org/10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R., 1974: Characteristics of North African easterly waves during the summers of 1968 and 1969. J. Atmos. Sci., 31, 15561570, https://doi.org/10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969a: Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Wea. Rev., 97, 716726, https://doi.org/10.1175/1520-0493(1969)097<0716:SROADA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969b: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276, https://doi.org/10.1175/1520-0493(1969)097<0256:SHOTAD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiao, S., and G. S. Jenkins, 2010: Numerical investigations on the formation of Tropical Storm Debby during NAMMA-06. Wea. Forecasting, 25, 866884, https://doi.org/10.1175/2010WAF2222313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, https://doi.org/10.1175/JAS-D-11-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieng, A. L., S. M. Sall, A. Lazar, M. Leduc-Leballeur, and L. Eymard, 2014: Analysis of strengthening and dissipating mesoscale convective systems propagating off the West African coast. Mon. Wea. Rev., 142, 46004623, https://doi.org/10.1175/MWR-D-13-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., M. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, https://doi.org/10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freismuth, T. M., B. Rutherford, M. A. Boothe, and M. T. Montgomery, 2016: Why did the storm ex-Gaston (2010) fail to redevelop during the PREDICT experiment? Atmos. Chem. Phys., 16, 85118519, https://doi.org/10.5194/acp-16-8511-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91111, https://doi.org/10.1175/JAS-D-12-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 43214332, https://doi.org/10.1175/JAS-D-13-0378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halperin, D. J., H. E. Fuelberg, R. E. Hart, J. H. Cossuth, P. Sura, and R. J. Pasch, 2013: An evaluation of tropical cyclone genesis forecasts from global numerical models. Wea. Forecasting, 28, 14231445, https://doi.org/10.1175/WAF-D-13-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419, https://doi.org/10.1175/2009MWR2760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 15981614, https://doi.org/10.1002/qj.2047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and S. J. Majumdar, 2015: Ensemble-based error and predictability metrics associated with tropical cyclogenesis. Part II: Wave-relative framework. Mon. Wea. Rev., 143, 16651686, https://doi.org/10.1175/MWR-D-14-00286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. D., and Coauthors, 2010: Reactive Halogens in the Marine Boundary Layer (RHaMBLe): The tropical North Atlantic experiments. Atmos. Chem. Phys., 10, 10311055, https://doi.org/10.5194/acp-10-1031-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, D. J. Cecil, and W. A. Petersen, 2013a: Relation between tropical easterly waves, convection, and tropical cyclogenesis: A Lagrangian perspective. Mon. Wea. Rev., 141, 26492668, https://doi.org/10.1175/MWR-D-12-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, W. A. Petersen, and D. J. Cecil, 2013b: Electrically active convection in tropical easterly waves and implications for tropical cyclogenesis in the Atlantic and east Pacific. Mon. Wea. Rev., 141, 542556, https://doi.org/10.1175/MWR-D-12-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 21–22.

  • Raymond, D. J., and C. L. Carrillo, 2011: The vorticity budget of developing typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, https://doi.org/10.5194/acp-11-147-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System Version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. A. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25, 6178, https://doi.org/10.1175/2009WAF2222255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and D. Cook, 2013: The role of vortex and environment errors in genesis forecasts of Hurricanes Danielle and Karl (2010). Mon. Wea. Rev., 141, 232251, https://doi.org/10.1175/MWR-D-12-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, https://doi.org/10.1175/MWR-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vomel, H., T. F. Hock, and K. Young, 2016: NCAR/EOL Technical Note Dropsonde Dry Bias. NCAR Tech. Note, NCAR, 7 pp.

  • Wang, J., and Coauthors, 2010: Water vapor variability and comparisons in the subtropical Pacific from The Observing System Research and Predictability Experiment-Pacific Asian Regional Campaign (T-PARC) Driftsonde, Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), and reanalyses. J. Geophys. Res., 115, D21108, https://doi.org/10.1029/2010JD014494.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, https://doi.org/10.1175/JAS-D-11-0298.1.

  • Wang, Z., and I. Hankes, 2014: Characteristics of tropical easterly wave pouches during tropical cyclone formation. Mon. Wea. Rev., 142, 626633, https://doi.org/10.1175/MWR-D-13-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18700 17097 7516
PDF Downloads 499 133 27