Precipitation and Mesoscale Convective Systems: Radiative Impact of Dust over Northern Africa

Irene Reinares Martínez Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Irene Reinares Martínez in
Current site
Google Scholar
PubMed
Close
and
Jean-Pierre Chaboureau Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Jean-Pierre Chaboureau in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The radiative effect of dust on precipitation and mesoscale convective systems (MCSs) is examined during a case of dust emission and transport from 9 to 14 June 2006 over northern Africa. The same method to identify and track different cloud types is applied to satellite observations and two convection-permitting simulations (with grid mesh of 2.5 km), with and without the radiative effect of dust, performed with the MesoNH model. The MCSs produce most of the observed total precipitation (66%), and the long-lived systems (lasting 6 h or more) are responsible for 55% of the total. Both simulations reproduce the observed distribution of precipitation between the cloud categories but differ due to the radiative effects of dust. The overall impacts of dust are a warming of the midtroposphere; a cooling of the near surface, primarily in the western parts of northern Africa; and a decrease in precipitation due to a too-low number of long-lived MCSs. The drop in their number is due to the stabilization of the lower atmosphere, which inhibits the triggering of convection. The long-lived MCSs are a little longer lived, faster, and more efficient in rainfall production when accounting for the dust–radiation interaction. This higher degree of organization is due to the larger convective available potential energy and an intensified African easterly jet. The latter is, in turn, a response to the variation in the meridional gradient of the temperature induced by the dust.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Irene Reinares Martínez, irene.reinares@aero.obs-mip.fr

Abstract

The radiative effect of dust on precipitation and mesoscale convective systems (MCSs) is examined during a case of dust emission and transport from 9 to 14 June 2006 over northern Africa. The same method to identify and track different cloud types is applied to satellite observations and two convection-permitting simulations (with grid mesh of 2.5 km), with and without the radiative effect of dust, performed with the MesoNH model. The MCSs produce most of the observed total precipitation (66%), and the long-lived systems (lasting 6 h or more) are responsible for 55% of the total. Both simulations reproduce the observed distribution of precipitation between the cloud categories but differ due to the radiative effects of dust. The overall impacts of dust are a warming of the midtroposphere; a cooling of the near surface, primarily in the western parts of northern Africa; and a decrease in precipitation due to a too-low number of long-lived MCSs. The drop in their number is due to the stabilization of the lower atmosphere, which inhibits the triggering of convection. The long-lived MCSs are a little longer lived, faster, and more efficient in rainfall production when accounting for the dust–radiation interaction. This higher degree of organization is due to the larger convective available potential energy and an intensified African easterly jet. The latter is, in turn, a response to the variation in the meridional gradient of the temperature induced by the dust.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Irene Reinares Martínez, irene.reinares@aero.obs-mip.fr
Save
  • Chaboureau, J.-P., and P. Bechtold, 2005: Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX). J. Geophys. Res., 110, D17103, https://doi.org/10.1029/2004JD005645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., P. Tulet, and C. Mari, 2007: Diurnal cycle of dust and cirrus over West Africa as seen from Meteosat Second Generation satellite and a regional forecast model. Geophys. Res. Lett., 34, L02822, https://doi.org/10.1029/2006GL027771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and Coauthors, 2008: A midlatitude precipitating cloud database validated with satellite observations. J. Appl. Meteor. Climatol., 47, 13371353, https://doi.org/10.1175/2007JAMC1731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and Coauthors, 2011: Long-range transport of Saharan dust and its radiative impact on precipitation forecast: A case study during the Convective and Orographically-induced Precipitation Study (COPS). Quart. J. Roy. Meteor. Soc., 137, 236251, https://doi.org/10.1002/qj.719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., and Coauthors, 2016: Fennec dust forecast intercomparison over the Sahara in June 2011. Atmos. Chem. Phys., 16, 69776995, https://doi.org/10.5194/acp-16-6977-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crumeyrolle, S., and Coauthors, 2011: Transport of dust particles from the Bodélé region to the monsoon layer—AMMA case study of the 9–14 June 2006 period. Atmos. Chem. Phys., 11, 479494, https://doi.org/10.5194/acp-11-479-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, https://doi.org/10.1002/qj.49712656202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emissions and transport. Earth-Sci. Rev., 79, 73100, https://doi.org/10.1016/j.earscirev.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flamant, C., J.-P. Chaboureau, D. J. Parker, C. M. Taylor, J.-P. Cammas, O. Bock, F. Timouk, and J. Pelon, 2007: Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Quart. J. Roy. Meteor. Soc., 133, 11751189, https://doi.org/10.1002/qj.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flamant, C., C. Lavaysse, M. Todd, J.-P. Chaboureau, and J. Pelon, 2009: Multi-platform observations of a springtime case of Bodélé and Sudan dust emission, transport and scavenging over West Africa. Quart. J. Roy. Meteor. Soc., 135, 413430, https://doi.org/10.1002/qj.376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the Earth’s atmosphere—A new parametrization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Grini, A., P. Tulet, and L. Gomes, 2006: Dusty weather forecasts using the MesoNH mesoscale atmospheric model. J. Geophys. Res., 111, D19205, https://doi.org/10.1029/2005JD007007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmert, J., B. Heinold, I. Tegen, O. Hellmuth, and M. Wendisch, 2007: On the direct and semidirect effects of Saharan dust over Europe: A modeling study. J. Geophys. Res., 112, D13208, https://doi.org/10.1029/2006JD007444.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., S.-C. Tsay, M. D. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42, 557569, https://doi.org/10.1109/TGRS.2004.824067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 (1), 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2014: Convection over tropical Africa and the East Atlantic during the West African Monsoon: Regional and diurnal variability. J. Climate, 27, 41594188, https://doi.org/10.1175/JCLI-D-13-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205218, https://doi.org/10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev., 11, 19291969, https://doi.org/10.5194/gmd-11-1929-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, https://doi.org/10.1007/s00585-997-0090-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. Carbone, V. Levizzani, and J. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109, https://doi.org/10.1002/qj.194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemaître, C., C. Flamant, J. Cuesta, J.-C. Raut, P. Chazette, P. Formenti, and J. Pelon, 2010: Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmos. Chem. Phys., 10, 81318150, https://doi.org/10.5194/acp-10-8131-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16 41516 430, https://doi.org/10.1029/95JD00690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, https://doi.org/10.5194/gmd-6-929-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, https://doi.org/10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 2002: The response of CAPE and CIN to tropospheric thermal variations. Quart. J. Roy. Meteor. Soc., 128, 119130, https://doi.org/10.1256/00359000260498815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez, C., S. Nickovic, G. Pejanovic, J. M. Baldasano, and E. Özsoy, 2006: Interactive dust-radiation modeling: A step to improve weather forecasts. J. Geophys. Res., 111, D16206, https://doi.org/10.1029/2005JD006717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pergaud, J., V. Masson, S. Malardel, and F. Couvreux, 2009: A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteor., 132, 83106, https://doi.org/10.1007/s10546-009-9388-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Reinares Martínez, I., and J.-P. Chaboureau, 2018: Precipitation and mesoscale convective systems: Explicit versus parameterized convection over northern Africa. Mon. Wea. Rev., 146, 797812, https://doi.org/10.1175/MWR-D-17-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R., M. Matricardi, P. Brunel, S. English, P. Bauer, U. O’Keeffe, P. Francis, and P. Rayer, 2005: RTTOV-8—Science and validation report. NWP SAF Tech. Rep., 41 pp., https://nwpsaf.eu/oldsite/deliverables/rtm/rttov8_svr.pdf.

  • Tompkins, A. M., C. Cardinali, J.-J. Morcrette, and M. Rodwell, 2005: Influence of aerosol climatology on forecasts of the African Easterly Jet. Geophys. Res. Lett., 32, L10801, https://doi.org/10.1029/2004GL022189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulet, P., V. Crassier, F. Cousin, K. Suhre, and R. Rosset, 2005: ORILAM, a three-moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso-NH-C model and validation on the Escompte campaign. J. Geophys. Res., 110, D18201, https://doi.org/10.1029/2004JD005716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulet, P., M. Mallet, V. Pont, J. Pelon, and A. Boone, 2008: The 7–13 March 2006 dust storm over West Africa: Generation, transport, and vertical stratification. J. Geophys. Res., 113, D00C08, https://doi.org/10.1029/2008JD009871.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zender, C. S., H. Bian, and D. Newman, 2003: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108, 4416, https://doi.org/10.1029/2002JD002775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., K. H. Cook, and E. K. Vizy, 2016: The diurnal cycle of warm season rainfall over West Africa. Part I: Observational analysis. J. Climate, 29, 84238437, https://doi.org/10.1175/JCLI-D-15-0874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1537 1255 603
PDF Downloads 328 98 11