On the Linkage among Strong Stratospheric Mass Circulation, Stratospheric Sudden Warming, and Cold Weather Events

Yueyue Yu Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yueyue Yu in
Current site
Google Scholar
PubMed
Close
,
Ming Cai Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida

Search for other papers by Ming Cai in
Current site
Google Scholar
PubMed
Close
,
Chunhua Shi Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Chunhua Shi in
Current site
Google Scholar
PubMed
Close
, and
Rongcai Ren Key Laboratory of Meteorological Disaster, Ministry of Education, and Joint International Research Laboratory of Climate and Environment Change, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Rongcai Ren in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is well established that sudden stratospheric warming (SSW) events tend to be accompanied by continental-scale, surface cold-air outbreaks (CAOs) in midlatitudes in boreal winter. However, SSW events occur at most one to two times per winter, whereas CAOs occur three to seven times over each of the North American and Eurasian continents. Using the ERA-Interim dataset for 37 winters (November–March) from 1979 to 2016, we reveal that SSW events correspond to a large-amplitude or long-lasting subset of pulse-like, anomalously strong, stratospheric mass circulation events. The anomalously strong, stratospheric mass circulation events (referred to as PULSE events) occur more than nine times in an average winter. The “displacement” versus “split” types of SSWs tend to correspond to the “wavenumber 1” versus “wavenumber 2” types of PULSEs, though the relationship between split-type SSWs and wavenumber-2-type PULSEs is weaker. Like SSW events, PULSEs also have a close relationship with CAOs. The robust relationship with CAOs still holds for the PULSE events not accompanied by SSW events. Using PULSE events, we determine that more than 70% of CAOs in the 37 winters occur in the week before and after a PULSE event, with a false alarm rate of CAO occurrence of about 25.7%. SSW events, however, are associated with only about 5.7% of CAOs, with a false alarm rate of 21.7%. Therefore, the linkage between individual continental-scale CAOs and PULSE events represents a more generalized relationship between the stratospheric circulation anomalies and surface weather. PULSE signals should also be considered as a potentially useful stratospheric indicator of the occurrence of individual CAO events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0110.s1.

Corresponding author: Yueyue Yu, yyu4@fsu.edu

Abstract

It is well established that sudden stratospheric warming (SSW) events tend to be accompanied by continental-scale, surface cold-air outbreaks (CAOs) in midlatitudes in boreal winter. However, SSW events occur at most one to two times per winter, whereas CAOs occur three to seven times over each of the North American and Eurasian continents. Using the ERA-Interim dataset for 37 winters (November–March) from 1979 to 2016, we reveal that SSW events correspond to a large-amplitude or long-lasting subset of pulse-like, anomalously strong, stratospheric mass circulation events. The anomalously strong, stratospheric mass circulation events (referred to as PULSE events) occur more than nine times in an average winter. The “displacement” versus “split” types of SSWs tend to correspond to the “wavenumber 1” versus “wavenumber 2” types of PULSEs, though the relationship between split-type SSWs and wavenumber-2-type PULSEs is weaker. Like SSW events, PULSEs also have a close relationship with CAOs. The robust relationship with CAOs still holds for the PULSE events not accompanied by SSW events. Using PULSE events, we determine that more than 70% of CAOs in the 37 winters occur in the week before and after a PULSE event, with a false alarm rate of CAO occurrence of about 25.7%. SSW events, however, are associated with only about 5.7% of CAOs, with a false alarm rate of 21.7%. Therefore, the linkage between individual continental-scale CAOs and PULSE events represents a more generalized relationship between the stratospheric circulation anomalies and surface weather. PULSE signals should also be considered as a potentially useful stratospheric indicator of the occurrence of individual CAO events.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0110.s1.

Corresponding author: Yueyue Yu, yyu4@fsu.edu

Supplementary Materials

    • Supplemental Materials (PDF 827.35 KB)
Save
  • Andrews, D., F. Taylor, and M. McIntyre, 1987: The influence of atmospheric waves on the general circulation of the middle atmosphere. Phil. Trans. Roy. Soc. London, 323A, 693705, https://doi.org/10.1098/rsta.1987.0115.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bancalá, S., K. Krüger, and M. Giorgetta, 2012: The preconditioning of major sudden stratospheric warmings. J. Geophys. Res., 117, D04101, https://doi.org/10.1029/2011JD016769.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., S. A. Clough, T. N. Palmer, and P. J. Trevelyan, 1982: Simulations of an observed stratospheric warming with quasigeostrophic refractive index as a model diagnostic. Quart. J. Roy. Meteor. Soc., 108, 475502, https://doi.org/10.1002/qj.49710845702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., 2003: Potential vorticity intrusion index and climate variability of surface temperature. Geophys. Res. Lett., 30, 1119, https://doi.org/10.1029/2002GL015926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and C. Shin, 2014: A total flow perspective of atmospheric mass and angular momentum circulations: Boreal winter mean state. J. Atmos. Sci., 71, 22442263, https://doi.org/10.1175/JAS-D-13-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., Y.-Y. Yu, Y. Deng, H. M. van den Dool, R. Ren, S. Saha, X. Wu, and J. Huang, 2016: Feeling the pulse of the stratosphere: An emerging opportunity for predicting continental-scale cold-air outbreaks 1 month in advance. Bull. Amer. Meteor. Soc., 97, 14751489, https://doi.org/10.1175/BAMS-D-14-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and D. Barriopedro, 2010: Dynamical connection between tropospheric blockings and stratospheric polar vortex. Geophys. Res. Lett., 37, L13809, https://doi.org/10.1029/2010GL043819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005: Downward propagation and statistical forecast of the near-surface weather. J. Geophys. Res., 110, D14104, https://doi.org/10.1029/2004JD005431.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2011: Tropospheric precursors and stratospheric warmings. J. Climate, 24, 65626572, https://doi.org/10.1175/2011JCLI4160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coughlin, K., and K. K. Tung, 2005: Tropospheric wave response to decelerated stratosphere seen as downward propagation in northern annular mode. J. Geophys. Res., 110, D01103, https://doi.org/10.1029/2004JD004661.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2012: ERA Interim, daily: 1 November 1979–28 February 2011. European Centre for Medium-Range Weather Forecasts, accessed 1 July 2012, http://apps.ecmwf.int/datasets/data/interim-full-daily/.

  • Eliassen, A. N., and E. Palm, 1961: On the transfer of energy in stationary mountain wave. Geofys. Publ., 22, 123.

  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, https://doi.org/10.1175/2010JCLI3010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómez-Escolar, M., N. Calvo, D. Barriopedro, and S. Fueglistaler, 2014: Tropical response to stratospheric sudden warmings and its modulation by the QBO. J. Geophys. Res. Atmos., 119, 73827395, https://doi.org/10.1002/2013JD020560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263293, https://doi.org/10.1146/annurev.fluid.37.061903.175710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J.-G., R.-C. Ren, and H.-M. Xu, 2014: Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci., 71, 23192334, https://doi.org/10.1175/JAS-D-13-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and S. S. P. Shen, Eds., 2005: Hilbert–Huang Transform and Its Applications. World Scientific, 311 pp.

    • Crossref
    • Export Citation
  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, https://doi.org/10.1029/2007RG000228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Z. Wu, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141, https://doi.org/10.1142/S1793536909000047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition method and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454A, 903995, https://doi.org/10.1098/rspa.1998.0193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech., 31, 417457, https://doi.org/10.1146/annurev.fluid.31.1.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, F., Z. Wu, J. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nat. Climate Change, 4, 462466, https://doi.org/10.1038/nclimate2223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press, 43–316, https://doi.org/10.1016/S0065-2687(08)60053-9.

    • Crossref
    • Export Citation
  • Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 38723889, https://doi.org/10.1175/2008JCLI2125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., K. Yamazaki, M. Chiba, and K. Shibata, 1990: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett., 17, 12631266, https://doi.org/10.1029/GL017i009p01263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, and S. Itoh, 2008: Tropospheric impact of reflected planetary waves from the stratosphere. Geophys. Res. Lett., 35, L16806, https://doi.org/10.1029/2008GL034575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, https://doi.org/10.1002/qj.620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 1999: Role of planetary waves in the stratosphere‐troposphere coupled variability in the Northern Hemisphere winter. Geophys. Res. Lett., 26, 23752378, https://doi.org/10.1029/1999GL900507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, https://doi.org/10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuttippurath, J., and G. Nikulin, 2012: A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010. Atmos. Chem. Phys., 12, 81158129, https://doi.org/10.5194/acp-12-8115-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehtonen, I., and A. Y. Karpechko, 2016: Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings. J. Geophys. Res. Atmos., 121, 15911610, https://doi.org/10.1002/2015JD023860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-P., and R.-Q. Ding, 2011: Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 32653283, https://doi.org/10.1175/MWR-D-10-05020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liberato, M. L. R., J. M. Castanheira, L. de la Torre, C. C. DaCamara, and L. Gimeno, 2007: Wave energy associated with the variability of the stratospheric polar vortex. J. Atmos. Sci., 64, 26832694, https://doi.org/10.1175/JAS3978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere‐troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N., J. Esler, A. Charlton-Perez, and L. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 15661585, https://doi.org/10.1175/2008JCLI2365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDaniel, B. A., and R. X. Black, 2005: Intraseasonal dynamical evolution of the northern annular mode. J. Climate, 18, 38203839, https://doi.org/10.1175/JCLI3467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., A. Charlton-Perez, and L. Gray, 2011: Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci., 68, 11941213, https://doi.org/10.1175/2010JAS3555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, https://doi.org/10.1175/JCLI-D-10-05021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmeiro, F. M., D. Barriopedro, R. García-Herrera, and N. Calvo, 2015: Comparing sudden stratospheric warming definitions in reanalysis data. J. Climate, 28, 68236840, https://doi.org/10.1175/JCLI-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 52685273, https://doi.org/10.1002/grl.50927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2013: The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere. J. Climate, 26, 17451763, https://doi.org/10.1175/JCLI-D-12-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2014: On the control of the residual circulation and stratospheric temperatures in the Arctic by planetary wave coupling. J. Atmos. Sci., 71, 195206, https://doi.org/10.1175/JAS-D-13-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2002: Issues in stratosphere-troposphere coupling. J. Meteor. Soc. Japan Ser. II, 80, 769792, https://doi.org/10.2151/jmsj.80.769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35, https://doi.org/10.21957/pocnex23c6.

    • Crossref
    • Export Citation
  • Stan, C., and D. M. Straus, 2009: Stratospheric predictability and sudden stratospheric warming events. J. Geophys. Res., 114, D12103, https://doi.org/10.1029/2008JD011277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomassini, L., E. P. Gerber, M. Baldwin, F. Bunzel, and M. Giorgetta, 2012: The role of stratosphere-troposphere coupling in the occurrence of extreme winter cold spells over northern Europe. J. Adv. Model. Earth Syst., 4, M00A03, https://doi.org/10.1029/2012MS000177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, https://doi.org/10.1002/qj.2432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, S.-H., B.-M. Kim, and J.-S. Kug, 2015: Temperature variation over East Asia during the lifecycle of weak stratospheric polar vortex. J. Climate, 28, 58575872, https://doi.org/10.1175/JCLI-D-14-00790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, and X. Chen, 2009: The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal., 1, 339372, https://doi.org/10.1142/S1793536909000187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoden, S., K. Ishioka, D. Durran, T. Enomoto, Y.-Y. Hayashi, T. Miyoshi, and M. Yamada, 2014: Theoretical aspects of variability and predictability in weather and climate systems. Bull. Amer. Meteor. Soc., 95, 11011104, https://doi.org/10.1175/BAMS-D-14-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., M. Cai, R.-C. Ren, and H. M. van den Dool, 2015a: Relationship between warm airmass transport into upper polar atmosphere and cold air outbreaks in winter. J. Atmos. Sci., 72, 349368, https://doi.org/10.1175/JAS-D-14-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., R.-C. Ren, and M. Cai, 2015b: Dynamical linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 32143232, https://doi.org/10.1175/JAS-D-14-0390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., R.-C. Ren, and M. Cai, 2015c: Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter. Geophys. Res. Lett., 42, 24422448, https://doi.org/10.1002/2015GL063676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., M. Cai, and R.-C. Ren, 2018a: A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode. Climate Dyn., 50, 37573773, https://doi.org/10.1007/s00382-017-3843-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., M. Cai, R.-C. Ren, and J. Rao, 2018b: A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in Northern Hemispheric winter. Climate Dyn., https://doi.org/10.1007/s00382-018-4069-7, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., C.-S. Shin, H. M. van den Dool, and M. Cai, 2013: CFSv2 prediction skill of stratospheric temperature anomalies. Climate Dyn., 41, 22312249, https://doi.org/10.1007/s00382-013-1907-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3286 2485 749
PDF Downloads 560 101 9