The Impact of Tropospheric and Stratospheric Tropical Variability on the Location, Frequency, and Duration of Cool-Season Extratropical Synoptic Events

Hannah E. Attard Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Hannah E. Attard in
Current site
Google Scholar
PubMed
Close
and
Andrea L. Lang Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Andrea L. Lang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cool-season occurrences of blocks, extratropical cyclones that undergo explosive cyclogenesis, and tropical cyclones (TCs) that undergo extratropical transition (ET) from 1980 to 2015 are analyzed using the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2, dataset. These synoptic events are first examined in a climatological analysis that includes identifying consecutive synoptic events, namely, blocks that follow bombs or ET events as well as extratropical cyclones that follow ET events. These synoptic events are then analyzed with respect to three tropical modes of variability: the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). The QBO was considered from both a momentum and thermal point of view, using the equatorial 30-hPa zonal-mean wind and the equatorial zonal wind shear between 30 and 50 hPa, respectively. The results show that in the seven days prior to cool-season blocks and ET events, there is a statistically significant frequency minimum in MJO phases 7 and 3, respectively. With respect to the QBO, there is a statistically significant frequency maximum in neutral QBO conditions during bomb onset and a frequency minimum during ET onset. When stratifying bombs by latitude, there is a significant reduction in Arctic (i.e., poleward of 55°N) bomb onset during easterly QBO conditions. The results show that both tropospheric and stratospheric tropical modes of variability can modulate the frequency of extratropical synoptic events to a similar degree.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0039.s1.

Current affiliation: National Research Council/Space Science Division, Naval Research Laboratory, Washington, D.C.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrea L. Lang, alang@albany.edu

Abstract

Cool-season occurrences of blocks, extratropical cyclones that undergo explosive cyclogenesis, and tropical cyclones (TCs) that undergo extratropical transition (ET) from 1980 to 2015 are analyzed using the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2, dataset. These synoptic events are first examined in a climatological analysis that includes identifying consecutive synoptic events, namely, blocks that follow bombs or ET events as well as extratropical cyclones that follow ET events. These synoptic events are then analyzed with respect to three tropical modes of variability: the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). The QBO was considered from both a momentum and thermal point of view, using the equatorial 30-hPa zonal-mean wind and the equatorial zonal wind shear between 30 and 50 hPa, respectively. The results show that in the seven days prior to cool-season blocks and ET events, there is a statistically significant frequency minimum in MJO phases 7 and 3, respectively. With respect to the QBO, there is a statistically significant frequency maximum in neutral QBO conditions during bomb onset and a frequency minimum during ET onset. When stratifying bombs by latitude, there is a significant reduction in Arctic (i.e., poleward of 55°N) bomb onset during easterly QBO conditions. The results show that both tropospheric and stratospheric tropical modes of variability can modulate the frequency of extratropical synoptic events to a similar degree.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0039.s1.

Current affiliation: National Research Council/Space Science Division, Naval Research Laboratory, Washington, D.C.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrea L. Lang, alang@albany.edu

Supplementary Materials

    • Supplemental Materials (ZIP 207 KB)
Save
  • Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific cyclones. Mon. Wea. Rev., 141, 23252346, https://doi.org/10.1175/MWR-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asbaghi, G., M. Joghataei, and A. R. Mohebalhojeh, 2017: Impacts of the QBO on the North Atlantic and Mediterranean storm tracks: An energetic perspective. Geophys. Res. Lett., 44, 10601067, https://doi.org/10.1002/2016GL072056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, https://doi.org/10.1002/2013GL058745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, A. R. Lupo, and E. Hernández, 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 10421063, https://doi.org/10.1175/JCLI3678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., R. García-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I: A novel detection scheme. Climate Dyn., 35, 13731391, https://doi.org/10.1007/s00382-010-0767-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., B. J. Hoskins, and E. Tyrlis, 2007: Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci., 64, 28812898, https://doi.org/10.1175/JAS3984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon. Wea. Rev., 112, 21482177, https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. Tech. Rep. NASA/TM-2015-104606/Vol. 43, NASA, 145 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.

  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1992: Climatology of explosive cyclones off the East Asian coast. Mon. Wea. Rev., 120, 30293035, https://doi.org/10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, 2006: Blocking index. NOAA/NWS, accessed 15 February 2016, http://www.cpc.ncep.noaa.gov/products/precip/CWlink/blocking/index/index.nh.shtml.

  • Colucci, S. J., and T. L. Alberta, 1996: Planetary-scale climatology of explosive cyclogenesis and blocking. Mon. Wea. Rev., 124, 25092520, https://doi.org/10.1175/1520-0493(1996)124<2509:PSCOEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., and M. E. Kelleher, 2015: Diagnostic comparison of tropospheric blocking events with and without sudden stratospheric warming. J. Atmos. Sci., 72, 22272240, https://doi.org/10.1175/JAS-D-14-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., and S. Pawson, 2015: The major stratospheric sudden warming of January 2013: Analyses and forecasts in the GOES-5 data assimilation system. Mon. Wea. Rev., 143, 491510, https://doi.org/10.1175/MWR-D-14-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, https://doi.org/10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 12731289, https://doi.org/10.1175/2011JAS3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., S. B. Feldstein, D. W. Waugh, C. Yoo, and S. Lee, 2012: Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation. Geophys. Res. Lett., 39, L18807, https://doi.org/10.1029/2012GL053144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 inst3_3d_asm_np: 3d,3-hourly,instantaneous,pressure-level,assimilation,assimilated meteorological fields v5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, accessed 1 August 2016, https://doi.org/10.5067/QBZ6MG944HW0.

    • Crossref
    • Export Citation
  • Gollan, G., and R. J. Greatbatch, 2017: The relationship between Northern Hemisphere winter blocking and tropical modes of variability. J. Climate, 30, 93219337, https://doi.org/10.1175/JCLI-D-16-0742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and S. R. Blumer, 2015: European high-impact weather caused by the downstream response to the extratropical transition of North Atlantic Hurricane Katia (2011). Geophys. Res. Lett., 42, 87388748, https://doi.org/10.1002/2015GL066253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the quasi biennial oscillation. Atmos. Chem. Phys., 18, 82278247, https://doi.org/10.5194/acp-18-8227-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244, https://doi.org/10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, https://doi.org/10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., S. Applequist, H. J. Diamond, J. P. Kossin, M. Kruk, and C. Schreck, 2010a: NCDC International Best Track Archive for Climate Stewardship (IBTrACS) project, version 3.7. NOAA National Centers for Environmental Information, accessed 13 January 2016, https://doi.org/10.7289/V5NK3BZP.

    • Crossref
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010b: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., P. N. Schumacher, R. F. Morales Jr., and L. W. Uccellini, 1995: Overview of the 12–14 March 1993 superstorm. Bull. Amer. Meteor. Soc., 76, 165182, https://doi.org/10.1175/1520-0477(1995)076<0165:OOTMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labitzke, K., and H. V. Loon, 1989: Association between the 11-yr solar cycle, the QBO, and the atmosphere. Part III: Aspects of the association. J. Climate, 2, 554565, https://doi.org/10.1175/1520-0442(1989)002<0554:ABTYSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian Oscillation and the Arctic Oscillation. J. Climate, 21, 30403049, https://doi.org/10.1175/2007JCLI1955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2002: Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon. Wea. Rev., 130, 21882209, https://doi.org/10.1175/1520-0493(2002)130<2188:ECDITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., and P. J. Smith, 1995: Climatological features of blocking anticyclones in the Northern Hemisphere. Tellus, 47A, 439456, https://doi.org/10.3402/tellusa.v47i4.11527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach. J. Climate, 26, 45354549, https://doi.org/10.1175/JCLI-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and J. M. Wallace, 1990: Observed changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies. J. Atmos. Sci., 47, 11001116, https://doi.org/10.1175/1520-0469(1990)047<1100:OCIBWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantillon, F., J.-P. Chaboureau, and E. Richard, 2015: Remote impact of North Atlantic hurricanes on the Mediterranean during episodes of intense rainfall in autumn 2012. Quart. J. Roy. Meteor. Soc., 141, 967978, https://doi.org/10.1002/qj.2419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., and J. M. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 20712076, https://doi.org/10.1175/1520-0493(1996)124<2071:RBNPWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action. Tellus, 2, 196211, https://doi.org/10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Riemer, M. S., C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modeling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, https://doi.org/10.1002/qj.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224, https://doi.org/10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, https://doi.org/10.1029/2003GL019341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. B., and P. E. Roundy, 2013: The relationship between the Madden–Julian oscillation and U.S. violent tornado outbreaks in the spring. Mon. Wea. Rev., 141, 20872095, https://doi.org/10.1175/MWR-D-12-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tinsley, B. A., 1988: The solar cyclone and the QBO influences on the latitude of storm tracks in the North Atlantic. Geophys. Res. Lett., 15, 409412, https://doi.org/10.1029/GL015i005p00409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2015: Comparison of wave packets associated with extratropical transition and winter cyclones. Mon. Wea. Rev., 143, 17821803, https://doi.org/10.1175/MWR-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and P. C. Fiedler, 2006: ENSO variability and the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 239266, https://doi.org/10.1016/j.pocean.2006.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H.-M. Kim, E. K. M. Chang, and S.-W. Son, 2018: Modulation of the MJO and North Pacific storm track relationship by the QBO. J. Geophys. Res. Atmos., 123, 39763992, https://doi.org/10.1029/2017JD027977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiedenmann, J. M., A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, 2002: The climatology of blocking anticyclones for the Northern and Southern Hemispheres: Block intensity as a diagnostic. J. Climate, 15, 34593473, https://doi.org/10.1175/1520-0442(2002)015<3459:TCOBAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2014: A 40-year climatology of extratropical transition in the eastern North Pacific. J. Climate, 27, 59996015, https://doi.org/10.1175/JCLI-D-13-00645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 569 152 9
PDF Downloads 415 71 9