Heavy Rainfall Associated with Double Low-Level Jets over Southern China. Part II: Convection Initiation

Yu Du Center for Monsoon and Environment Research, School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Yu Du in
Current site
Google Scholar
PubMed
Close
and
Guixing Chen Center for Monsoon and Environment Research, School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

Search for other papers by Guixing Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Heavy rainfall that occurred at the south coast of China on 10–11 May 2014 was associated with a synoptic-system-related low-level jet (SLLJ) and a boundary layer jet (BLJ). To clarify the role of the double low-level jets in convection initiation (CI), we perform convective-permitting simulations using a nonhydrostatic mesoscale model. The simulations reproduce the occurrence location and mesoscale evolution of new convective cells as well as their small-scale wavelike structures at the elevated layers, which are generally consistent with radar observations despite some differences in their orientation. The nighttime BLJ over the northern South China Sea strengthens the convergence at ~950 hPa near the coast where the BLJ’s northern terminus reaches the coastal terrain. Meanwhile, the SLLJ to the south of the inland cold front provides divergence at ~700 hPa near the SLLJ’s entrance region. Such low-level convergence and midlevel divergence collectively produce strong mesoscale lifting for CI at the coast. In addition to the enhanced mesoscale lifting, the double low-level jets also provide favorable conditions for the superimposed small-scale disturbances that can serve as effective moistening mechanisms of the lower troposphere during CI. In a sensitivity experiment with coastal terrain removed, CI still occurs near the coast but is delayed and weaker compared to the control run. This latter experiment suggests that double low-level jets and their coupling indeed exert key effects on CI, while the BLJ colliding with terrain may enhance coastal convergence for amplifying CI. These findings provide new insights into the occurrence of coastal heavy rainfall in the warm sector far ahead of the fronts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Du, duyu7@mail.sysu.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0101.1

Abstract

Heavy rainfall that occurred at the south coast of China on 10–11 May 2014 was associated with a synoptic-system-related low-level jet (SLLJ) and a boundary layer jet (BLJ). To clarify the role of the double low-level jets in convection initiation (CI), we perform convective-permitting simulations using a nonhydrostatic mesoscale model. The simulations reproduce the occurrence location and mesoscale evolution of new convective cells as well as their small-scale wavelike structures at the elevated layers, which are generally consistent with radar observations despite some differences in their orientation. The nighttime BLJ over the northern South China Sea strengthens the convergence at ~950 hPa near the coast where the BLJ’s northern terminus reaches the coastal terrain. Meanwhile, the SLLJ to the south of the inland cold front provides divergence at ~700 hPa near the SLLJ’s entrance region. Such low-level convergence and midlevel divergence collectively produce strong mesoscale lifting for CI at the coast. In addition to the enhanced mesoscale lifting, the double low-level jets also provide favorable conditions for the superimposed small-scale disturbances that can serve as effective moistening mechanisms of the lower troposphere during CI. In a sensitivity experiment with coastal terrain removed, CI still occurs near the coast but is delayed and weaker compared to the control run. This latter experiment suggests that double low-level jets and their coupling indeed exert key effects on CI, while the BLJ colliding with terrain may enhance coastal convergence for amplifying CI. These findings provide new insights into the occurrence of coastal heavy rainfall in the warm sector far ahead of the fronts.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Du, duyu7@mail.sysu.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0101.1

Save
  • Abdullah, A. J., 1955: The atmospheric solitary wave. Bull. Amer. Meteor. Soc., 36, 511518, https://doi.org/10.1175/1520-0477-36.10.511.

  • Anthes, R. A., Y.-H. Kuo, S. G. Benjamin, and Y.-F. Li, 1982: The evolution of the mesoscale environment of severe local storms: Preliminary modeling results. Mon. Wea. Rev., 110, 11871213, https://doi.org/10.1175/1520-0493(1982)110<1187:TEOTME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Astling, E. G., J. Paegle, E. Miller, and C. J. O’Brien, 1985: Boundary layer control of nocturnal convection associated with a synoptic-scale system. Mon. Wea. Rev., 113, 540552, https://doi.org/10.1175/1520-0493(1985)113<0540:BLCONC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1972: Geostrophic adjustment. Rev. Geophys. Space Res., 10, 485528, https://doi.org/10.1029/RG010i002p00485.

  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, S. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Sha, T. Iwasaki, and Z. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Mon. Wea. Rev., 145, 33653389, https://doi.org/10.1175/MWR-D-16-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., and C. C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884891, https://doi.org/10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., 1982: The instability of the gravity-inertia wave and its relation to low-level jet and heavy rainfall. J. Meteor. Soc. Japan, 60, 10411057, https://doi.org/10.2151/jmsj1965.60.5_1041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. J., Y. H. Kuo, W. Wang, Z. Y. Tao, and B. Cui, 1998: A modeling case study of heavy rainstorms along the Mei-Yu front. Mon. Wea. Rev., 126, 23302351, https://doi.org/10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., K. Zhao, and M. Xue, 2014: Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos., 119, 12 44712 465, https://doi.org/10.1002/2014JD021965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., K. Zhao, and M. Xue, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the mei-yu season coastal rainfall over south China. J. Atmos. Sci., 74, 28352856, https://doi.org/10.1175/JAS-D-17-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, https://doi.org/10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and G. Chen, 2018: Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemble-based analysis. Mon. Wea. Rev., 146, 38273844, https://doi.org/10.1175/MWR-D-18-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. H. Zhang, Y. L. Chen, Y. Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 57475767, https://doi.org/10.1175/JCLI-D-13-00571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., 2017: Convection initiation caused by heterogeneous Great Plains low-level jets. M.S. thesis, School of Meteorology, University of Oklahoma, Norman, OK, 162 pp.

  • Hastenrath, S., 1985: Climate and Circulation of the Tropics. D. Reidel Publishing Company, 455 pp.

    • Crossref
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., and D. A. Paine, 1977: The observed divergence of the horizontal velocity field and pressure gradient force at the mesoscale: Its implications for the parameterization of three-dimensional momentum transport in synoptic-scale numerical models. Beitr. Phys. Atmos., 50, 321330.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., 1979: Mesoscale gravity waves as a possible trigger of severe convection along a dryline. Ph.D. thesis, University of Oklahoma, Norman, OK, 195 pp.

  • Koch, S. E., and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 25702592, https://doi.org/10.1175/1520-0493(1988)116<2570:AMGWEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and P. J. Kocin, 1991: Frontal contraction processes leading to the formation of an intense narrow rainband. Meteor. Atmos. Phys., 46, 123154, https://doi.org/10.1007/BF01027339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanicci, J. M., T. N. Carlson, and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea. Rev., 115, 26602673, https://doi.org/10.1175/1520-0493(1987)115<2660:SOTGPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., P. J. Restrepo, and D. P. Lettenmaier, 2011: Development of a unified land model for prediction of surface hydrology and land–atmosphere interactions. J. Hydrometeor., 12, 12991320, https://doi.org/10.1175/2011JHM1361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., 2017: Advances in understanding the early-summer heavy rainfall over South China. The Global Monsoon System: Research and Forecast, C.-P. Chang et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 9, World Scientific, 215–226, https://doi.org/10.1142/9789813200913_0017.

    • Crossref
    • Export Citation
  • Luo, Y., and Coauthors, 2017: The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 9991013, https://doi.org/10.1175/BAMS-D-15-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 24727, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastrantonio, G., F. Einaudi, D. Fua, and D. P. Lalas, 1976: Generation of gravity waves by jet streams in the atmosphere. J. Atmos. Sci., 33, 17301738, https://doi.org/10.1175/1520-0469(1976)033<1730:GOGWBJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Means, L. L., 1952: On thunderstorm forecasting in the central United States. Mon. Wea. Rev., 80, 165189, https://doi.org/10.1175/1520-0493(1952)080<0165:OTFITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 24552464, https://doi.org/10.1175/1520-0493(1999)127<2455:CIBDCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. XI: Comparisons between observational and theoretical aspects of rainbands. J. Atmos. Sci., 40, 23772397, https://doi.org/10.1175/1520-0469(1983)040<2377:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pecnick, M. J., and J. A. Young, 1984: Mechanics of a strong subsynoptic gravity wave deduced from satellite and surface observations. J. Atmos. Sci., 41, 18501862, https://doi.org/10.1175/1520-0469(1984)041<1850:MOASSG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, M. E., and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comput. Fluid Dyn., 20, 501524, https://doi.org/10.1007/s00162-006-0034-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze, 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richiardone, R., and M. Manfrin, 2003: A rain episode related to a mesoscale gravity wave. Bull. Amer. Meteor. Soc., 84, 14941498, https://doi.org/10.1175/BAMS-84-11-1494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream–frontal zone systems. J. Atmos. Sci., 38, 954973, https://doi.org/10.1175/1520-0469(1981)038<0954:FAGFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stobie, J. G., F. Einaudi, and L. W. Uccellini, 1983: A case study of gravity waves–convective interaction: 9 May 1979. J. Atmos. Sci., 40, 28042830, https://doi.org/10.1175/1520-0469(1983)040<2804:ACSOGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S. Q., and G. H. Zhai, 1980: On the instability of the low level jet and its trigger function for the occurrence of heavy rain-storms (in Chinese). Sci. Atmos. Sin., 4 (4), 327337.

    • Search Google Scholar
    • Export Citation
  • Tepper, M., 1950: A proposed mechanism of squall lines—The pressure jump line. J. Meteor., 7, 2129, https://doi.org/10.1175/1520-0469(1950)007<0021:APMOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trexler, M., and S. Koch, 2000: The life cycle of mesoscale gravity waves as observed by a network of Doppler wind profilers. Mon. Wea. Rev., 128, 24232446, https://doi.org/10.1175/1520-0493(2000)128<2423:TLCOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., 2003: Convective storms: Convective intiation. Encyclopedia and Atmospheric Sciences, J. A. Curry and J. A. Pyle, Eds., Academic Press, 560–570, https://doi.org/10.1016/B0-12-227090-8/00122-6.

    • Crossref
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., D. B. Parsons, and J. H. E. Clark, 1991: Environment and evolution of a cold-frontal mesoscale convective system. Mon. Wea. Rev., 119, 24292455, https://doi.org/10.1175/1520-0493(1991)119<2429:EAEOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale vertical motions near nocturnal convection initiation in PECAN. Mon. Wea. Rev., 145, 29192941, https://doi.org/10.1175/MWR-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J., and C. A. Davis, 2006: Corridors of warm-season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703, https://doi.org/10.1175/1520-0493(1979)107,0682:TCOUAL.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115, 721729, https://doi.org/10.1175/1520-0493(1987)115,0721:TSSAPE.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period. Mon. Wea. Rev., 112, 3155, https://doi.org/10.1175/1520-0493(1984)112<0031:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tuyl, A. H., and J. A. Young, 1982: Numerical simulation of nonlinear jet streak adjustment. Mon. Wea. Rev., 110, 20382054, https://doi.org/10.1175/1520-0493(1982)110<2038:NSONJS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Luo, and B. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13 20613 232, https://doi.org/10.1002/2014JD022339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., E. Greegan, M. Felton, D. Ligon, and G. Huynh, 2013: Investigation of nocturnal low-level jet–generated gravity waves over Oklahoma City during morning boundary layer transition period using Doppler wind lidar data. J. Appl. Remote Sens., 7, 073487, https://doi.org/10.1117/1.JRS.7.073487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 21692187, https://doi.org/10.1175/1520-0493(1992)120<2169:TIAOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., and Y. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J. Meteor. Res., 30, 719736, https://doi.org/10.1007/s13351-016-6089-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. E. Koch, and M. L. Kaplan, 2003: Numerical simulations of a large-amplitude mesoscale gravity wave event. Meteor. Atmos. Phys., 84, 199216, https://doi.org/10.1007/s00703-002-0594-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2370 1120 127
PDF Downloads 1774 483 20