A New Perspective toward Cataloging Northern Hemisphere Rossby Wave Breaking on the Dynamic Tropopause

Kevin A. Bowley Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Kevin A. Bowley in
Current site
Google Scholar
PubMed
Close
,
John R. Gyakum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by John R. Gyakum in
Current site
Google Scholar
PubMed
Close
, and
Eyad H. Atallah Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eyad H. Atallah in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rossby wave breaking (RWB) events are a common feature on the dynamic tropopause and act to modulate synoptic-scale jet dynamics. These events are characterized on the dynamic tropopause by an irreversible overturning of isentropes and are coupled to troposphere-deep vertical motions and geopotential height anomalies. Prior climatologies have focused on the poleward streamer, the equatorward streamer, or the reversal in potential temperature gradient between the streamers, resulting in differences in the frequencies of RWB. Here, a new approach toward cataloging these events that captures both streamers is applied to the National Centers for Environmental Prediction Reanalysis-2 dataset for 1979–2011. Anticyclonic RWB (AWB) events are found to be nearly twice as frequent as cyclonic RWB (CWB) events. Seasonal decompositions of the annual mean find AWB to be most common in summer (40% occurrence), which is likely due to the Asian monsoon, while CWB is most frequent in winter (22.5%) and is likely due to the equatorward shift in mean baroclinicity. Trends in RWB from 1980 to 2010 illustrate a westward shift in North Pacific AWB during winter and summer (up to 0.4% yr−1), while CWB in the North Pacific increases in winter and spring (up to 0.2% yr−1). These changes are hypothesized to be associated with localized changes in the two-way interaction between the jet and RWB. The interannual variability of AWB and CWB is also explored, and a notable modality to the frequency of RWB is found that may be attributable to known low-frequency modes of variability including the Arctic Oscillation, the North Atlantic Oscillation, and the Pacific–North American pattern.

Current affiliation: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin A. Bowley, kbowley@psu.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0143.1

Abstract

Rossby wave breaking (RWB) events are a common feature on the dynamic tropopause and act to modulate synoptic-scale jet dynamics. These events are characterized on the dynamic tropopause by an irreversible overturning of isentropes and are coupled to troposphere-deep vertical motions and geopotential height anomalies. Prior climatologies have focused on the poleward streamer, the equatorward streamer, or the reversal in potential temperature gradient between the streamers, resulting in differences in the frequencies of RWB. Here, a new approach toward cataloging these events that captures both streamers is applied to the National Centers for Environmental Prediction Reanalysis-2 dataset for 1979–2011. Anticyclonic RWB (AWB) events are found to be nearly twice as frequent as cyclonic RWB (CWB) events. Seasonal decompositions of the annual mean find AWB to be most common in summer (40% occurrence), which is likely due to the Asian monsoon, while CWB is most frequent in winter (22.5%) and is likely due to the equatorward shift in mean baroclinicity. Trends in RWB from 1980 to 2010 illustrate a westward shift in North Pacific AWB during winter and summer (up to 0.4% yr−1), while CWB in the North Pacific increases in winter and spring (up to 0.2% yr−1). These changes are hypothesized to be associated with localized changes in the two-way interaction between the jet and RWB. The interannual variability of AWB and CWB is also explored, and a notable modality to the frequency of RWB is found that may be attributable to known low-frequency modes of variability including the Arctic Oscillation, the North Atlantic Oscillation, and the Pacific–North American pattern.

Current affiliation: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin A. Bowley, kbowley@psu.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0143.1

Save
  • Abatzoglou, J. T., and G. Magnusdottir, 2006: Planetary wave breaking and nonlinear reflection: Seasonal cycle and interannual variability. J. Climate, 19, 61396152, https://doi.org/10.1175/JCLI3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akahori, K., and S. Yoden, 1997: Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model. J. Atmos. Sci., 54, 23492361, https://doi.org/10.1175/1520-0469(1997)054<2349:ZFVABO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358, 570572, https://doi.org/10.1038/358570a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and J. R. Holton, 1988: Climatology of the stratospheric polar vortex and planetary wave breaking. J. Atmos. Sci., 45, 11231142, https://doi.org/10.1175/1520-0469(1988)045<1123:COTSPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. J. Geophys. Res., 117, D09117, https://doi.org/10.1029/2012JD017469.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, https://doi.org/10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowley, K. A., J. R. Gyakum, and E. H. Atallah, 2019: The role of dynamic tropopause Rossby wave breaking for synoptic-scale buildups in Northern Hemisphere zonal available potential energy. Mon. Wea. Rev., 147, 433455, https://doi.org/10.1175/MWR-D-18-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Rivière, and P. Arbogast, 2015: The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Climate, 28, 39573976, https://doi.org/10.1175/JCLI-D-14-00552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabriel, A., and D. Peters, 2008: A diagnostic study of different types of Rossby wave breaking events in the northern extratropics. J. Meteor. Soc. Japan, 86, 613631, https://doi.org/10.2151/jmsj.86.613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64, 19221940, https://doi.org/10.1175/JAS3927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1997: A potential vorticity view of synoptic development. Meteor. Appl., 4, 325334, https://doi.org/10.1017/S1350482797000716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isotta, F., O. Martius, M. Sprenger, and C. Schwierz, 2008: Long-term trends of synoptic-scale breaking Rossby waves in the Northern Hemisphere between 1958 and 2001. Int. J. Climatol., 28, 15511562, https://doi.org/10.1002/joc.1647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, https://doi.org/10.1002/2014JD022796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., X. Ren, and X. Yang, 2014: Mean flow–storm track relationship and Rossby wave breaking in two types of El-Niño. Adv. Atmos. Sci., 31, 197210, https://doi.org/10.1007/s00376-013-2297-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., and G. Rivière, 2016: Rossby wave breaking: Climatology, interaction with low-frequency climate variability, and links to extreme weather events. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. Li, et al. Eds., Cambridge University Press, 69–78, https://doi.org/10.1017/CBO9781107775541.006.

    • Crossref
    • Export Citation
  • Martius, O., E. Zenklusen, C. Schwierz, and H. C. Davies, 2006: Episodes of alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol., 26, 11491164, https://doi.org/10.1002/joc.1295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwierz, and H. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 25762592, https://doi.org/10.1175/JAS3977.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2012: Wave-breaking characteristics of midlatitude blocking. Quart. J. Roy. Meteor. Soc., 138, 12851296, https://doi.org/10.1002/qj.990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach. J. Climate, 26, 45354549, https://doi.org/10.1175/JCLI-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, https://doi.org/10.1038/305593a0.

  • Michel, C., and G. Rivière, 2011: The link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci., 68, 17301748, https://doi.org/10.1175/2011JAS3635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and R. A. Plumb, 1994: The effects of flow asymmetry on the direction of Rossby wave breaking. J. Atmos. Sci., 51, 20312045, https://doi.org/10.1175/1520-0469(1994)051<2031:TEOFAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1993: Momentum flux, flow symmetry, and the nonlinear barotropic governor. J. Atmos. Sci., 50, 21592179, https://doi.org/10.1175/1520-0469(1993)050<2159:MFFSAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndarana, T., and D. W. Waugh, 2011: A climatology of Rossby wave breaking on the Southern Hemisphere tropopause. J. Atmos. Sci., 68, 798811, https://doi.org/10.1175/2010JAS3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 9931023, https://doi.org/10.1175/1520-0469(2003)60<993:BIELCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62, 13671390, https://doi.org/10.1175/JAS3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D., and D. W. Waugh, 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric air. J. Atmos. Sci., 53, 30133031, https://doi.org/10.1175/1520-0469(1996)053<3013:IOBSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, D., and D. W. Waugh, 2003: Rossby wave breaking in the Southern Hemisphere wintertime upper troposphere. Mon. Wea. Rev., 131, 26232634, https://doi.org/10.1175/1520-0493(2003)131<2623:RWBITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and R. A. Plumb, 1992: Rossby wave breaking, microbreaking, filamentation, and secondary vortex formation: The dynamics of a perturbed vortex. J. Atmos. Sci., 49, 462476, https://doi.org/10.1175/1520-0469(1992)049<0462:RWBMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 2001: A case study of Rossby wave breaking along the subtropical tropopause. Mon. Wea. Rev., 129, 25552569, https://doi.org/10.1175/1520-0493(2001)129<2555:ACSORW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, https://doi.org/10.1175/2008JAS2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, https://doi.org/10.1175/2011JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, https://doi.org/10.1175/JAS3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and M. Drouard, 2015a: Dynamics of the northern annular mode at weekly time scales. J. Atmos. Sci., 72, 45694590, https://doi.org/10.1175/JAS-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and M. Drouard, 2015b: Understanding the contrasting North Atlantic Oscillation anomalies of the winters of 2010 and 2014. Geophys. Res. Lett., 42, 68686875, https://doi.org/10.1002/2015GL065493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., A. Laîné, G. Lapeyre, D. Salas-Mélia, and M. Kageyama, 2010: Links between Rossby wave breaking and the North Atlantic Oscillation–Arctic Oscillation in present-day and Last Glacial Maximum climate simulations. J. Climate, 23, 29873008, https://doi.org/10.1175/2010JCLI3372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and J.-P. Cammas, 2002: Wave breaking and mixing at the subtropical tropopause. J. Atmos. Sci., 59, 23472361, https://doi.org/10.1175/1520-0469(2002)059<2347:WBAMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, https://doi.org/10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., H. Wernli, N. A. Bond, and R. Langland, 2001: The influence of the 1997–99 El Niño Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. Quart. J. Roy. Meteor. Soc., 127, 331342, https://doi.org/10.1002/qj.49712757205.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008a: How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation. Geophys. Res. Lett., 35, L10706, https://doi.org/10.1029/2008GL033578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008b: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65, 28612876, https://doi.org/10.1175/2008JAS2632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2009: The role of tropospheric Rossby wave breaking in the Pacific decadal oscillation. J. Climate, 22, 18191833, https://doi.org/10.1175/2008JCLI2593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., P. J. Kushner, and I. M. Held, 1997: Dynamics of barotropic storm tracks. J. Atmos. Sci., 54, 791810, https://doi.org/10.1175/1520-0469(1997)054<0791:DOBST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. F. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27, 38573860, https://doi.org/10.1029/2000GL012250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, https://doi.org/10.1175/JAS3912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, https://doi.org/10.1175/2007JAS2347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 895 342 26
PDF Downloads 768 264 20