Application of a Hybrid Statistical–Dynamical System to Seasonal Prediction of North American Temperature and Precipitation

Sarah Strazzo NOAA/NWS/NCEP/Climate Prediction Center, College Park, and Innovim, LLC, Greenbelt, Maryland

Search for other papers by Sarah Strazzo in
Current site
Google Scholar
PubMed
Close
,
Dan C. Collins NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Dan C. Collins in
Current site
Google Scholar
PubMed
Close
,
Andrew Schepen CSIRO Land and Water, Dutton Park, Queensland, Australia

Search for other papers by Andrew Schepen in
Current site
Google Scholar
PubMed
Close
,
Q. J. Wang The University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Q. J. Wang in
Current site
Google Scholar
PubMed
Close
,
Emily Becker NOAA/NWS/NCEP/Climate Prediction Center, College Park, and Innovim, LLC, Greenbelt, Maryland

Search for other papers by Emily Becker in
Current site
Google Scholar
PubMed
Close
, and
Liwei Jia NOAA/NWS/NCEP/Climate Prediction Center, College Park, and Innovim, LLC, Greenbelt, Maryland

Search for other papers by Liwei Jia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent research demonstrates that dynamical models sometimes fail to represent observed teleconnection patterns associated with predictable modes of climate variability. As a result, model forecast skill may be reduced. We address this gap in skill through the application of a Bayesian postprocessing technique—the calibration, bridging, and merging (CBaM) method—which previously has been shown to improve probabilistic seasonal forecast skill over Australia. Calibration models developed from dynamical model reforecasts and observations are employed to statistically correct dynamical model forecasts. Bridging models use dynamical model forecasts of relevant climate modes (e.g., ENSO) as predictors of remote temperature and precipitation. Bridging and calibration models are first developed separately using Bayesian joint probability modeling and then merged using Bayesian model averaging to yield an optimal forecast. We apply CBaM to seasonal forecasts of North American 2-m temperature and precipitation from the North American Multimodel Ensemble (NMME) hindcast. Bridging is done using the model-predicted Niño-3.4 index. Overall, the fully merged CBaM forecasts achieve higher Brier skill scores and better reliability compared to raw NMME forecasts. Bridging enhances forecast skill for individual NMME member model forecasts of temperature, but does not result in significant improvements in precipitation forecast skill, possibly because the models of the NMME better represent the ENSO–precipitation teleconnection pattern compared to the ENSO–temperature pattern. These results demonstrate the potential utility of the CBaM method to improve seasonal forecast skill over North America.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Strazzo, sarah.strazzo@noaa.gov

Abstract

Recent research demonstrates that dynamical models sometimes fail to represent observed teleconnection patterns associated with predictable modes of climate variability. As a result, model forecast skill may be reduced. We address this gap in skill through the application of a Bayesian postprocessing technique—the calibration, bridging, and merging (CBaM) method—which previously has been shown to improve probabilistic seasonal forecast skill over Australia. Calibration models developed from dynamical model reforecasts and observations are employed to statistically correct dynamical model forecasts. Bridging models use dynamical model forecasts of relevant climate modes (e.g., ENSO) as predictors of remote temperature and precipitation. Bridging and calibration models are first developed separately using Bayesian joint probability modeling and then merged using Bayesian model averaging to yield an optimal forecast. We apply CBaM to seasonal forecasts of North American 2-m temperature and precipitation from the North American Multimodel Ensemble (NMME) hindcast. Bridging is done using the model-predicted Niño-3.4 index. Overall, the fully merged CBaM forecasts achieve higher Brier skill scores and better reliability compared to raw NMME forecasts. Bridging enhances forecast skill for individual NMME member model forecasts of temperature, but does not result in significant improvements in precipitation forecast skill, possibly because the models of the NMME better represent the ENSO–precipitation teleconnection pattern compared to the ENSO–temperature pattern. These results demonstrate the potential utility of the CBaM method to improve seasonal forecast skill over North America.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Strazzo, sarah.strazzo@noaa.gov
Save
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L. L’Heureux, 2018: Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Climate Dyn., https://doi.org/10.1007/s00382-017-3603-3, in press.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and H. van Den Dool, 2016: Probabilistic seasonal forecasts in the North American multimodel ensemble: A baseline skill assessment. J. Climate, 29, 30153026, https://doi.org/10.1175/JCLI-D-14-00862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Challinor, A., J. Slingo, T. Wheeler, and F. Doblas-Reyes, 2005: Probabilistic simulations of crop yield over western India using the DEMETER seasonal hindcast ensembles. Tellus, 57A, 498512, https://doi.org/10.3402/tellusa.v57i3.14670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L.-C., H. van den Dool, E. Becker, and Q. Zhang, 2017: ENSO precipitation and temperature forecasts in the North American Multimodel Ensemble: Composite analysis and validation. J. Climate, 30, 11031125, https://doi.org/10.1175/JCLI-D-15-0903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., J. García-Serrano, F. Lienert, A. P. Biescas, and L. R. Rodrigues, 2013: Seasonal climate predictability and forecasting: status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, https://doi.org/10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 11111152, https://doi.org/10.1002/joc.636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, https://doi.org/10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Hartmann, H. C., T. C. Pagano, S. Sorooshian, and R. Bales, 2002: Confidence builders: Evaluating seasonal climate forecasts from user perspectives. Bull. Amer. Meteor. Soc., 83, 683698, https://doi.org/10.1175/1520-0477(2002)083<0683:CBESCF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., T. M. Osborne, C. K. Ho, and A. J. Challinor, 2013: Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agric. For. Meteor., 170, 1931, https://doi.org/10.1016/j.agrformet.2012.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky, 1999: Bayesian model averaging: A tutorial. Stat. Sci., 14, 382417, https://doi.org/10.1214/ss/1009212519.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, https://doi.org/10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013: The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narapusetty, B., D. Collins, R. Murtugudde, J. Gottschalck, and C. Peters-Lidard, 2018: Bias correction to improve the skill of summer precipitation forecasts over contiguous United States by the North American Multi-Model Ensemble system. Atmos. Sci. Lett., 19, e818, https://doi.org/10.1002/asl.818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NSF/NASA/DOE, 2014: The North American multi-model ensemble. NOAA/NSF/NASA/DOE, accessed 3 April 2017, http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.

  • NOAA/OAR/ESRL/PSD, 2002: NOAA optimum interpolation (OI) sea surface temperature (SST) v2. NOAA/OAR/ESRL/PSD, accessed 12 December 2016, https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.

  • NOAA/OAR/ESRL/PSD, 2008: GHCN-CAMS Gridded 2m Temperature (Land). NOAA/OAR/ESRL/PSD, accessed 12 December 2016, https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html.

  • Palmer, T., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, https://doi.org/10.1175/BAMS-85-6-853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Z., Q. Wang, J. C. Bennett, A. Schepen, F. Pappenberger, P. Pokhrel, and Z. Wang, 2014: Statistical calibration and bridging of ECMWF System4 outputs for forecasting seasonal precipitation over China. J. Geophys. Res. Atmos., 119, 71167135, https://doi.org/10.1002/2013JD021162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., D. Madigan, and J. A. Hoeting, 1997: Bayesian model averaging for linear regression models. J. Amer. Stat. Assoc., 92, 179191, https://doi.org/10.1080/01621459.1997.10473615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepen, A., Q. Wang, and D. E. Robertson, 2014: Seasonal forecasts of Australian rainfall through calibration and bridging of coupled GCM outputs. Mon. Wea. Rev., 142, 17581770, https://doi.org/10.1175/MWR-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepen, A., Q. Wang, and Y. Everingham, 2016: Calibration, bridging, and merging to improve GCM seasonal temperature forecasts in Australia. Mon. Wea. Rev., 144, 24212441, https://doi.org/10.1175/MWR-D-15-0384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., A. McNally, G. Husak, and C. Funk, 2014: A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrol. Earth Syst. Sci., 18, 39073921, https://doi.org/10.5194/hess-18-3907-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and F. Di Giuseppe, 2015: Potential predictability of malaria in Africa using ECMWF monthly and seasonal climate forecasts. J. Appl. Meteor. Climatol., 54, 521540, https://doi.org/10.1175/JAMC-D-14-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, D. MacLeod, I. Christel, and M. Davis, 2017: Seasonal climate prediction: A new source of information for the management of wind energy resources. J. Appl. Meteor. Climatol., 56, 12311247, https://doi.org/10.1175/JAMC-D-16-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unger, D. A., H. van den Dool, E. O’Lenic, and D. Collins, 2009: Ensemble regression. Mon. Wea. Rev., 137, 23652379, https://doi.org/10.1175/2008MWR2605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H., 2007: Empirical Methods in Short-Term Climate Prediction. Oxford University Press, 240 pp.

    • Crossref
    • Export Citation
  • van den Dool, H., E. Becker, L.-C. Chen, and Q. Zhang, 2017: The probability anomaly correlation and calibration of probabilistic forecasts. Wea. Forecasting, 32, 199206, https://doi.org/10.1175/WAF-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., M. A. Balmaseda, L. Ferranti, T. N. Stockdale, and D. L. Anderson, 2005: Evaluation of atmospheric fields from the ECMWF seasonal forecasts over a 15-year period. J. Climate, 18, 32503269, https://doi.org/10.1175/JCLI3421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernieres, G., M. M. Rienecker, R. Kovach, and C. L. Keppenne, 2012: The GEOS-iODAS: Description and evaluation. NASA/TM-2012-104606/Vol. 30, NASA, 73 pp.

  • Wang, Q., and D. Robertson, 2011: Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res., 47, W02546, https://doi.org/10.1029/2010WR009333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., D. Robertson, and F. Chiew, 2009: A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res., 45, W05407, https://doi.org/10.1029/2008WR007355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., A. Schepen, and D. E. Robertson, 2012a: Merging seasonal rainfall forecasts from multiple statistical models through Bayesian model averaging. J. Climate, 25, 55245537, https://doi.org/10.1175/JCLI-D-11-00386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., D. L. Shrestha, D. Robertson, and P. Pokhrel, 2012b: A log-sinh transformation for data normalization and variance stabilization. Water Resour. Res., 48, W05514, https://doi.org/10.1029/2011WR010973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Xie, P., and P. A. Arkin, 1997: CPC merged analysis of precipitation (CMAP). NOAA/NWS/CPC, accessed 12 December 2016, http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cmap.html.

  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, https://doi.org/10.1175/JCLI-D-12-00600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, I.-K., and R. A. Johnson, 2000: A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954959, https://doi.org/10.1093/biomet/87.4.954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, L. Slater, G. A. Vecchi, and A. A. Bradley, 2017: Improved ENSO forecasting using Bayesian updating and the North American Multimodel Ensemble (NMME). J. Climate, 30, 90079025, https://doi.org/10.1175/JCLI-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1231 437 41
PDF Downloads 889 280 17