Comparison of Observed and Simulated Drop Size Distributions from Large-Eddy Simulations with Bin Microphysics

Mikael K. Witte National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Mikael K. Witte in
Current site
Google Scholar
PubMed
Close
,
Patrick Y. Chuang Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, California

Search for other papers by Patrick Y. Chuang in
Current site
Google Scholar
PubMed
Close
,
Orlando Ayala Engineering Technology Department, Old Dominion University, Norfolk, Virginia

Search for other papers by Orlando Ayala in
Current site
Google Scholar
PubMed
Close
,
Lian-Ping Wang Department of Mechanical Engineering, University of Delaware, Newark, Delaware, and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China

Search for other papers by Lian-Ping Wang in
Current site
Google Scholar
PubMed
Close
, and
Graham Feingold Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Graham Feingold in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two case studies of marine stratocumulus (one nocturnal and drizzling, the other daytime and nonprecipitating) are simulated by the UCLA large-eddy simulation model with bin microphysics for comparison with aircraft in situ observations. A high-bin-resolution variant of the microphysics is implemented for closer comparison with cloud drop size distribution (DSD) observations and a turbulent collision–coalescence kernel to evaluate the role of turbulence on drizzle formation. Simulations agree well with observational constraints, reproducing observed thermodynamic profiles (i.e., liquid water potential temperature and total moisture mixing ratio) as well as liquid water path. Cloud drop number concentration and liquid water content profiles also agree well insofar as the thermodynamic profiles match observations, but there are significant differences in DSD shape among simulations that cause discrepancies in higher-order moments such as sedimentation flux, especially as a function of bin resolution. Counterintuitively, high-bin-resolution simulations produce broader DSDs than standard resolution for both cases. Examination of several metrics of DSD width and percentile drop sizes shows that various discrepancies of model output with respect to the observations can be attributed to specific microphysical processes: condensation spuriously creates DSDs that are too wide as measured by standard deviation, which leads to collisional production of too many large drops. The turbulent kernel has the greatest impact on the low-bin-resolution simulation of the drizzling case, which exhibits greater surface precipitation accumulation and broader DSDs than the control (quiescent kernel) simulations. Turbulence effects on precipitation formation cannot be definitively evaluated using bin microphysics until the artificial condensation broadening issue has been addressed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mikael K. Witte, mikael.k.witte@jpl.nasa.gov

Abstract

Two case studies of marine stratocumulus (one nocturnal and drizzling, the other daytime and nonprecipitating) are simulated by the UCLA large-eddy simulation model with bin microphysics for comparison with aircraft in situ observations. A high-bin-resolution variant of the microphysics is implemented for closer comparison with cloud drop size distribution (DSD) observations and a turbulent collision–coalescence kernel to evaluate the role of turbulence on drizzle formation. Simulations agree well with observational constraints, reproducing observed thermodynamic profiles (i.e., liquid water potential temperature and total moisture mixing ratio) as well as liquid water path. Cloud drop number concentration and liquid water content profiles also agree well insofar as the thermodynamic profiles match observations, but there are significant differences in DSD shape among simulations that cause discrepancies in higher-order moments such as sedimentation flux, especially as a function of bin resolution. Counterintuitively, high-bin-resolution simulations produce broader DSDs than standard resolution for both cases. Examination of several metrics of DSD width and percentile drop sizes shows that various discrepancies of model output with respect to the observations can be attributed to specific microphysical processes: condensation spuriously creates DSDs that are too wide as measured by standard deviation, which leads to collisional production of too many large drops. The turbulent kernel has the greatest impact on the low-bin-resolution simulation of the drizzling case, which exhibits greater surface precipitation accumulation and broader DSDs than the control (quiescent kernel) simulations. Turbulence effects on precipitation formation cannot be definitively evaluated using bin microphysics until the artificial condensation broadening issue has been addressed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mikael K. Witte, mikael.k.witte@jpl.nasa.gov
Save
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, https://doi.org/10.1175/2008MWR2582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W. Grabowski, 2008a: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1: Results from direct numerical simulation. New J. Physics, 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayala, O., B. Rosa, L.-P. Wang, and W. Grabowski, 2008b: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2: Theory and parameterization. New J. Physics, 10, 075016, https://doi.org/10.1088/1367-2630/10/7/075016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 16121615, https://doi.org/10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K., and H. Ochs, 1993: Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteor., 32, 608625, https://doi.org/10.1175/1520-0450(1993)032<0608:WRIAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benmoshe, N., M. Pinsky, A. Pokrovsky, and A. Khain, 2012: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-D simulations by a spectral mixed-phase microphysics cloud model. J. Geophys. Res., 117, D06220, https://doi.org/10.1029/2011JD016603.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, https://doi.org/10.1029/2006GL027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carman, J. K., D. L. Rossiter, D. Khelif, H. H. Jonsson, I. C. Faloona, and P. Y. Chuang, 2012: Observational constraints on entrainment and the entrainment interface layer in stratocumulus. Atmos. Chem. Phys., 12, 11 13511 152, https://doi.org/10.5194/acp-12-11135-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., P. Bartello, M. K. Yau, P. A. Vaillancourt, and K. Zwijsen, 2016: Cloud droplet collisions in turbulent environment: Collision statistics and parameterization. J. Atmos. Sci., 73, 621636, https://doi.org/10.1175/JAS-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., E. W. Saw, J. D. Small, R. A. Shaw, C. M. Sipperley, G. A. Payne, and W. D. Bachalo, 2008: Airborne phase Doppler interferometry for cloud microphysical measurements. Aerosol Sci. Technol., 42, 685703, https://doi.org/10.1080/02786820802232956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857878, https://doi.org/10.1175/1520-0469(1973)030<0857:NMOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., S. G. Lasher-Trapp, and A. M. Blyth, 2013: The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud. J. Atmos. Sci., 70, 17271743, https://doi.org/10.1175/JAS-D-12-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B., and Coauthors, 2012: Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc., 138, 14011429, https://doi.org/10.1002/qj.1897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci., 65, 17951816, https://doi.org/10.1175/2007JAS2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. P. Malinowski, H. Jonsson, D. Khelif, and S. K. Krueger, 2013: Entrainment rates and microphysics in POST stratocumulus. J. Geophys. Res. Atmos., 118, 12 09412 109, https://doi.org/10.1002/jgrd.50878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. J. Atmos. Sci., 71, 44934499, https://doi.org/10.1175/JAS-D-14-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 12241234, https://doi.org/10.1175/2007MWR2283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, W., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, https://doi.org/10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and G. Svensson, 1995: Cloud microphysical relationships in California marine stratus. J. Atmos. Sci., 34, 26552666, https://doi.org/10.1175/1520-0450(1995)034<2655:CMRICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jen-La Plante, I., and Coauthors, 2016: Physics of Stratocumulus Top (POST): Turbulence characteristics. Atmos. Chem. Phys., 16, 97119725, https://doi.org/10.5194/acp-16-9711-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci., 74, 679697, https://doi.org/10.1175/JAS-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448460, https://doi.org/10.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 21152131, https://doi.org/10.1175/1520-0469(1999)056<2115:ALESMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, https://doi.org/10.1175/JTECH1980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2000: Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius. Geophys. Res. Lett., 27, 19031906, https://doi.org/10.1029/1999GL011011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M. L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res., 112, D10209, https://doi.org/10.1029/2006JD007985.

    • Search Google Scholar
    • Export Citation
  • Magaritz-Ronen, L., M. Pinsky, and A. Khain, 2016: Drizzle formation in stratocumulus clouds: Effects of turbulent mixing. Atmos. Chem. Phys., 16, 18491862, https://doi.org/10.5194/acp-16-1849-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClatchy, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1971: Optical properties of the atmosphere. Air Force Cambridge Research Laboratories Environmental Research Paper 411, 113 pp.

    • Crossref
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onishi, R., and A. Seifert, 2016: Reynolds-number dependence of turbulence enhancement on collision growth. Atmos. Chem. Phys., 16, 12 44112 455, https://doi.org/10.5194/acp-16-12441-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., W. W. Grabowski, and J.-L. Brenguier, 2006: Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett., 33, L19810, https://doi.org/10.1029/2006GL026841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., and B. Stevens, 2009: Monte Carlo spectral integration: A consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst., 1, 1, https://doi.org/10.3894/JAMES.2009.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., L. Magaritz, A. Khain, O. Krasnov, and A. Sterkin, 2008: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in a nonmixing limit. J. Atmos. Sci., 65, 20642086, https://doi.org/10.1175/2007JAS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., and Coauthors, 2017: Use of cloud radar Doppler spectra to evaluate stratocumulus drizzle size distributions in large-eddy simulations with size-resolved microphysics. J. Appl. Meteor. Climatol., 56, 32633283, https://doi.org/10.1175/JAMC-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., L. Nuijens, and B. Stevens, 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Quart. J. Roy. Meteor. Soc., 136, 17531762, https://doi.org/10.1002/qj.684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., R. Shaw, and Z. Warhaft, 2010: Statistics of small-scale velocity fluctuations and internal intermittency in marine stratocumulus clouds. J. Atmos. Sci., 67, 262273, https://doi.org/10.1175/2009JAS3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162, https://doi.org/10.2151/jmsj.86A.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996a: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 9801006, https://doi.org/10.1175/1520-0469(1996)053<0980:EOTMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., R. L. Walko, W. R. Cotton, and G. Feingold, 1996b: The spurious production of cloud-edge supersaturations by Eulerian models. Mon. Wea. Rev., 124, 10341041, https://doi.org/10.1175/1520-0493(1996)124<1034:TSPOCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, https://doi.org/10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18, 11501170, https://doi.org/10.1175/1520-0426(2001)018<1150:LMOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149, https://doi.org/10.1175/1520-0469(1987)044<3139:AENSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123328, https://doi.org/10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., T. G. Reisin, and Z. Levin, 1999: A numerical solution of the kinetic collection equation using high spectral grid resolution: A proposed reference. J. Comput. Phys., 148, 527544, https://doi.org/10.1006/jcph.1998.6128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., and W. Grabowski, 2009: The role of air turbulence in warm rain initiation. Atmos. Sci. Lett., 10, 18, https://doi.org/10.1002/asl.210.

  • Witte, M. K., O. Ayala, L. P. Wang, A. Bott, and P. Y. Chuang, 2017: Estimating collision–coalescence rates from in situ observations of marine stratocumulus. Quart. J. Roy. Meteor. Soc., 143, 27552763, https://doi.org/10.1002/qj.3124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111, D21205, https://doi.org/10.1029/2006JD007553.

  • Wyszogrodzki, A. A., W. W. Grabowski, L.-P. Wang, and O. Ayala, 2013: Turbulent collision–coalescence in maritime shallow convection. Atmos. Chem. Phys., 13, 84718487, https://doi.org/10.5194/acp-13-8471-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 324 94 8
PDF Downloads 238 62 6