Ensemble Sensitivity Analysis of the Blocking System over Russia in Summer 2010

Lisa-Ann Quandt Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Lisa-Ann Quandt in
Current site
Google Scholar
PubMed
Close
,
Julia H. Keller World Meteorological Organization, Geneva, Switzerland, and Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Julia H. Keller in
Current site
Google Scholar
PubMed
Close
,
Olivia Martius Institute of Geography, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Search for other papers by Olivia Martius in
Current site
Google Scholar
PubMed
Close
,
Joaquim G. Pinto Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Joaquim G. Pinto in
Current site
Google Scholar
PubMed
Close
, and
Sarah C. Jones Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Sarah C. Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In summer 2010, the weather conditions in the Euro-Russian sector were affected by a long-lasting atmospheric block that led to a heat wave in Russia and floods in Pakistan. Following previous studies describing the block’s predictability, the present study aims to investigate uncertainties in the upper-level wave pattern and diabatic processes that were responsible for the block’s forecast variability during its onset, mature, and decay phases. With this aim, an ensemble sensitivity analysis (ESA) is performed for three medium-range THORPEX Interactive Grand Global Ensemble multimodel ensemble forecasts, one associated with each phase of the block’s life cycle. The ESA revealed that the block’s predictability was influenced by forecast uncertainties in the general wave pattern and in the vertically integrated water vapor transport (IVT), used here as a proxy for diabatic processes. These uncertainties are associated with spatial shifts and intensity changes of synoptic waves and IVT during the whole life cycle of the block. During the onset phase, specific features include an Atlantic precursor block and the occurrence of several cyclones. During the mature stage, the blocking ridge itself was highly predictable, while forecast uncertainties in the wave pattern and in IVT primarily were associated with uncertainties in the block’s western flank. During the decay phase, the ESA signals were less intense, but the forecast variability significantly depended on the transformation of the block into a high-over-low pattern. It can be concluded that ESA is suitable to investigate the block’s forecast variability in multimodel ensembles.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0252.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lisa-Ann Quandt, lisa-ann.quandt@kit.edu

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Abstract

In summer 2010, the weather conditions in the Euro-Russian sector were affected by a long-lasting atmospheric block that led to a heat wave in Russia and floods in Pakistan. Following previous studies describing the block’s predictability, the present study aims to investigate uncertainties in the upper-level wave pattern and diabatic processes that were responsible for the block’s forecast variability during its onset, mature, and decay phases. With this aim, an ensemble sensitivity analysis (ESA) is performed for three medium-range THORPEX Interactive Grand Global Ensemble multimodel ensemble forecasts, one associated with each phase of the block’s life cycle. The ESA revealed that the block’s predictability was influenced by forecast uncertainties in the general wave pattern and in the vertically integrated water vapor transport (IVT), used here as a proxy for diabatic processes. These uncertainties are associated with spatial shifts and intensity changes of synoptic waves and IVT during the whole life cycle of the block. During the onset phase, specific features include an Atlantic precursor block and the occurrence of several cyclones. During the mature stage, the blocking ridge itself was highly predictable, while forecast uncertainties in the wave pattern and in IVT primarily were associated with uncertainties in the block’s western flank. During the decay phase, the ESA signals were less intense, but the forecast variability significantly depended on the transformation of the block into a high-over-low pattern. It can be concluded that ESA is suitable to investigate the block’s forecast variability in multimodel ensembles.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/MWR-D-18-0252.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lisa-Ann Quandt, lisa-ann.quandt@kit.edu

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Supplementary Materials

    • Supplemental Materials (PDF 867.45 KB)
Save
  • Agustí-Panareda, A., C. Thorncroft, G. Craig, and S. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074, https://doi.org/10.1256/qj.02.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, H., 1952: Kinematics of meandering and blocking action of the westerlies. Pap. Meteor. Geophys., 3, 1218, https://doi.org/10.2467/mripapers1950.3.1_12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berggren, R., B. Bolin, and C.-G. Rossby, 1949: An aerological study of zonal motion, its perturbations and break-down. Tellus, 1, 1437, https://doi.org/10.3402/tellusa.v1i2.8501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehler, T., C. C. Raible, and T. F. Stocker, 2011: The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus, 63A, 174187, https://doi.org/10.1111/j.1600-0870.2010.00492.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M., R. Higgins, and V. Kousky, 2004: Downstream weather impacts associated with atmospheric blocking over the northeast Pacific. J. Climate, 17, 48234839, https://doi.org/10.1175/JCLI-3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K., M. Zheng, and K. Raeder, 2013: Medium-range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Mon. Wea. Rev., 141, 211231, https://doi.org/10.1175/MWR-D-11-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 1985: Explosive cyclogenesis and large-scale circulation changes: Implications for atmospheric blocking. J. Atmos. Sci., 42, 27012717, https://doi.org/10.1175/1520-0469(1985)042<2701:ECALSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 1987: Comparative diagnosis of blocking versus nonblocking planetary-scale circulation changes during synoptic-scale cyclogenesis. J. Atmos. Sci., 44, 124139, https://doi.org/10.1175/1520-0469(1987)044<0124:CDOBVN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., C. Schwierz, and H. Davies, 2007: A multifaceted climatology of atmospheric blocking and its recent linear trend. J. Climate, 20, 633649, https://doi.org/10.1175/JCLI4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, F. X., and D. F. Stevens, 1988: A case study of atmospheric blocking using isentropic analysis. Mon. Wea. Rev., 116, 223241, https://doi.org/10.1175/1520-0493(1988)116<0223:ACSOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M., F. Ralph, and D. Lavers, 2015: Setting the stage for a global science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 96, https://doi.org/10.1029/2015EO038675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, https://doi.org/10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eiras-Barca, J., A. M. Ramos, J. G. Pinto, R. M. Trigo, M. L. Liberato, and G. Miguez-Macho, 2018: The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dyn., 9, 91102, https://doi.org/10.5194/esd-9-91-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., L. Magnusson, F. Vitart, and D. S. Richardson, 2018: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe? Quart. J. Roy. Meteor. Soc., 144, 17881802, https://doi.org/10.1002/qj.3341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and P. J. Webster, 1988: Alternative theories of atmospheric teleconnections and low-frequency fluctuations. Rev. Geophys., 26, 459494, https://doi.org/10.1029/RG026i003p00459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., M. A. Collier, and A. B. Watkins, 2004: Ensemble prediction of blocking regime transitions. Tellus, 56A, 485500, https://doi.org/10.1111/j.1600-0870.2004.00075.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabriel, A., and D. Peters, 2008: A diagnostic study of different types of Rossby wave breaking events in the northern extratropics. J. Meteor. Soc. Japan, 86, 613631, https://doi.org/10.2151/jmsj.86.613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gómara, I., J. G. Pinto, T. Woollings, G. Masato, P. Zurita-Gotor, and B. Rodríguez-Fonseca, 2014: Rossby wave-breaking analysis of explosive cyclones in the Euro-Atlantic sector. Quart. J. Roy. Meteor. Soc., 140, 738753, https://doi.org/10.1002/qj.2190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., H. Binder, S. Pfahl, N. Piaget, and H. Wernli, 2014: Atmospheric processes triggering the central European floods in June 2013. Nat. Hazards Earth Syst. Sci., 14, 16911702, https://doi.org/10.5194/nhess-14-1691-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., L. Magnusson, and E. Madonna, 2018: An atmospheric dynamics perspective on the amplification and propagation of forecast error in numerical weather prediction models: A case study. Quart. J. Roy. Meteor. Soc., 144, 25772591, https://doi.org/10.1002/qj.3353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J., 1977: The weather during July 1976: Some dynamical considerations of the drought. Weather, 32, 120126, https://doi.org/10.1002/j.1477-8696.1977.tb04532.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., H.-H. Hsu, N.-H. Lin, and H. Chiu, 2011: Roles of European blocking and tropical-extratropical interaction in the 2010 Pakistan flooding. Geophys. Res. Lett., 38, L13806, https://doi.org/10.1029/2011GL047583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. D. Sardeshmukh, 1987: A diagnostic study of the dynamics of the Northern Hemisphere winter of 1985-86. Quart. J. Roy. Meteor. Soc., 113, 759778, https://doi.org/10.1002/qj.49711347705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R., Jr., K. Rasmussen, S. Medina, S. Brodzik, and U. Romatschke, 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, https://doi.org/10.1175/2010BAMS3173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., 2017: Amplification of the downstream wave train during extratropical transition: Sensitivity studies. Mon. Wea. Rev., 145, 15291548, https://doi.org/10.1175/MWR-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K., and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. J. Hydrometeor., 13, 392403, https://doi.org/10.1175/JHM-D-11-016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejenäs, H., 1977: On the breakdown of the westerlies. Atmosphere, 15, 89113, https://doi.org/10.1080/00046973.1977.9648433.

  • Liu, Q., 1994: On the definition and persistence of blocking. Tellus, 46, 286298, https://doi.org/10.3402/tellusa.v46i3.15479.

  • Lupo, A. R., I. Mokhov, S. Dostoglou, A. Kunz, and J. Burkhardt, 2007: Assessment of the impact of the planetary scale on the decay of blocking and the use of phase diagrams and enstrophy as a diagnostic. Izv. Atmos. Ocean. Phys., 43, 4551, https://doi.org/10.1134/S0001433807010057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., I. Mokhov, M. G. Akperov, A. V. Chernokulsky, and H. Athar, 2012: A dynamic analysis of the role of the planetary- and synoptic-scale in the summer of 2010 blocking episodes over the European part of Russia. Adv. Meteor., 2012, 584257, https://doi.org/10.1155/2012/584257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., 2017: Diagnostic methods for understanding the origin of forecast errors. Quart. J. Roy. Meteor. Soc., 143, 21292142, https://doi.org/10.1002/qj.3072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., and Coauthors, 2013: The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Quart. J. Roy. Meteor. Soc., 139, 17801797, https://doi.org/10.1002/qj.2082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2009: Blocking predictability in operational medium-range ensemble forecasts. SOLA, 5, 113116, https://doi.org/10.2151/sola.2009-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, https://doi.org/10.1029/2010GL046557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, C., G. Rivière, L. Terray, and B. Joly, 2012: The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys. Res. Lett., 39, L10806, https://doi.org/10.1029/2012GL051682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., 1987: Transient eddy forcing of blocking flows. J. Atmos. Sci., 44, 322, https://doi.org/10.1175/1520-0469(1987)044<0003:TEFOBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and R. A. Plumb, 1994: The effects of flow asymmetry on the direction of Rossby wave breaking. J. Atmos. Sci., 51, 20312045, https://doi.org/10.1175/1520-0469(1994)051<2031:TEOFAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, T., T. Woollings, and A. Weisheimer, 2018: Ensemble sensitivity analysis of Greenland blocking in medium-range forecasts. Quart. J. Roy. Meteor. Soc., 144, 23582379, https://doi.org/10.1002/qj.3391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003a: How well does the ECMWF Ensemble Prediction System predict blocking? Quart. J. Roy. Meteor. Soc., 129, 16831702, https://doi.org/10.1256/qj.01.173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003b: A new perspective on blocking. J. Atmos. Sci., 60, 743755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610614, https://doi.org/10.1038/ngeo2487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quandt, L.-A., J. H. Keller, O. Martius, and S. C. Jones, 2017: Forecast variability of the blocking system over Russia in summer 2010 and its impact on surface conditions. Wea. Forecasting, 32, 6182, https://doi.org/10.1175/WAF-D-16-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F., and M. Dettinger, 2011: Storms, floods, and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, https://doi.org/10.1029/2011EO320001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 2, 196211, https://doi.org/10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Schneidereit, A., S. Schubert, P. Vargin, F. Lunkeit, X. Zhu, D. H. Peters, and K. Fraedrich, 2012: Large-scale flow and the long-lasting blocking high over Russia: Summer 2010. Mon. Wea. Rev., 140, 29672981, https://doi.org/10.1175/MWR-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2011: Ensemble-based analysis of factors leading to the development of a multiday warm-season heavy rain event. Mon. Wea. Rev., 139, 30163035, https://doi.org/10.1175/MWR-D-10-05022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwierz, C. B., 2001: Interactions of Greenland-scale orography and extra-tropical synoptic-scale flow. Ph.D. thesis, Swiss Federal Institute of Technology, 49 pp., https://doi.org/10.3929/ethz-a-004325718.

    • Crossref
    • Export Citation
  • Shutts, G., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, https://doi.org/10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 4967, https://doi.org/10.1175/BAMS-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, H., 1998: Numerical simulation of a life-cycle of atmospheric blocking and the analysis of potential vorticity using a simple barotropic model. J. Meteor. Soc. Japan, 76, 9831008, https://doi.org/10.2151/jmsj1965.76.6_983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teubler, F., and M. Riemer, 2016: Dynamics of Rossby wave packets in a quantitative potential vorticity–potential temperature framework. J. Atmos. Sci., 73, 10631081, https://doi.org/10.1175/JAS-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., B. Hoskins, and M. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010a: Diagnosis of the downstream ridging associated with extratropical transition using short-term ensemble forecasts. J. Atmos. Sci., 67, 817833, https://doi.org/10.1175/2009JAS3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010b: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25, 6178, https://doi.org/10.1175/2009WAF2222255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677, https://doi.org/10.1175/2007MWR2132.1.

  • Tracton, M. S., 1990: Predictability and its relationship to scale interaction processes in blocking. Mon. Wea. Rev., 118, 16661695, https://doi.org/10.1175/1520-0493(1990)118<1666:PAIRTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., 117, D17103, https://doi.org/10.1029/2012JD018020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., and P. J. Smith, 1990: The role of synoptic/planetary-scale interactions during the development of a blocking anticyclone. Tellus, 42A, 174193, https://doi.org/10.3402/tellusa.v42i1.11869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, M., E. K. Chang, and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, https://doi.org/10.1175/WAF-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 615 233 30
PDF Downloads 427 115 15