Scale-Selective Precision for Weather and Climate Forecasting

Matthew Chantry Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Matthew Chantry in
Current site
Google Scholar
PubMed
Close
,
Tobias Thornes Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Tobias Thornes in
Current site
Google Scholar
PubMed
Close
,
Tim Palmer Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Tim Palmer in
Current site
Google Scholar
PubMed
Close
, and
Peter Düben European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Peter Düben in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Attempts to include the vast range of length scales and physical processes at play in Earth’s atmosphere push weather and climate forecasters to build and more efficiently utilize some of the most powerful computers in the world. One possible avenue for increased efficiency is in using less precise numerical representations of numbers. If computing resources saved can be reinvested in other ways (e.g., increased resolution or ensemble size) a reduction in precision can lead to an increase in forecast accuracy. Here we examine reduced numerical precision in the context of ECMWF’s Open Integrated Forecast System (OpenIFS) model. We posit that less numerical precision is required when solving the dynamical equations for shorter length scales while retaining accuracy of the simulation. Transformations into spectral space, as found in spectral models such as OpenIFS, enact a length scale decomposition of the prognostic fields. Utilizing this, we introduce a reduced-precision emulator into the spectral space calculations and optimize the precision necessary to achieve forecasts comparable with double and single precision. On weather forecasting time scales, larger length scales require higher numerical precision than smaller length scales. On decadal time scales, half precision is still sufficient precision for everything except the global mean quantities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Chantry, matthew.chantry@physics.ox.ac.uk

Abstract

Attempts to include the vast range of length scales and physical processes at play in Earth’s atmosphere push weather and climate forecasters to build and more efficiently utilize some of the most powerful computers in the world. One possible avenue for increased efficiency is in using less precise numerical representations of numbers. If computing resources saved can be reinvested in other ways (e.g., increased resolution or ensemble size) a reduction in precision can lead to an increase in forecast accuracy. Here we examine reduced numerical precision in the context of ECMWF’s Open Integrated Forecast System (OpenIFS) model. We posit that less numerical precision is required when solving the dynamical equations for shorter length scales while retaining accuracy of the simulation. Transformations into spectral space, as found in spectral models such as OpenIFS, enact a length scale decomposition of the prognostic fields. Utilizing this, we introduce a reduced-precision emulator into the spectral space calculations and optimize the precision necessary to achieve forecasts comparable with double and single precision. On weather forecasting time scales, larger length scales require higher numerical precision than smaller length scales. On decadal time scales, half precision is still sufficient precision for everything except the global mean quantities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Chantry, matthew.chantry@physics.ox.ac.uk
Save
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B, 57, 289300.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H., J. Berner, D. R. Coleman, and T. Palmer, 2017: Stochastic parameterization and El Niño–Southern Oscillation. J. Climate, 30, 1738, https://doi.org/10.1175/JCLI-D-16-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, A., and P. D. Düben, 2017: rpe v5: An emulator for reduced floating-point precision in large numerical simulations. Geosci. Model Dev., 10, 22212230, https://doi.org/10.5194/gmd-10-2221-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Düben, P. D., and T. N. Palmer, 2014: Benchmark tests for numerical weather forecasts on inexact hardware. Mon. Wea. Rev., 142, 38093829, https://doi.org/10.1175/MWR-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2017: IFS documentation Cy43r3. Part V: Ensemble prediction system. Tech. Rep., ECMWF, Shinfield Park, United Kingdom, 23 pp., https://www.ecmwf.int/sites/default/files/elibrary/2017/17737-part-v-ensemble-prediction-system.pdf.

  • Markidis, S., S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter, 2018: NVIDIA Tensor Core programmability, performance and precision. Proc. 2018 IEEE Int. Parallel and Distributed Processing Symp. Workshops, Vancouver, British Columbia, Canada, IEEE, 522–531, https://doi.org/10.1109/IPDPSW.2018.00091.

    • Crossref
    • Export Citation
  • Nakano, M., H. Yashiro, C. Kodama, and H. Tomita, 2018: Single precision in the dynamical core of a nonhydrostatic global atmospheric model: Evaluation using a baroclinic wave test case. Mon. Wea. Rev., 146, 409416, https://doi.org/10.1175/MWR-D-17-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, ECMWF, Shinfield Park, United Kingdom, 42 pp., https://doi.org/10.21957/ps8gbwbdv.

    • Crossref
    • Export Citation
  • Russell, F. P., P. D. Düben, X. Niu, W. Luk, and T. N. Palmer, 2015: Architectures and precision analysis for modelling atmospheric variables with chaotic behaviour. 2015 IEEE 23rd Annual Int. Symp. on Field-Programmable Custom Computing Machines (FCCM), Vancouver, British Columbia, Canada, IEEE, 171–178.

  • Sanchez, C., K. D. Williams, and M. Collins, 2016: Improved stochastic physics schemes for global weather and climate models. Quart. J. Roy. Meteor. Soc., 142, 147159, https://doi.org/10.1002/qj.2640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., M. Leutbecher, A. Weisheimer, T. Stockdale, L. Isaksen, and M. Bonavita, 2011: Representing model uncertainty: Stochastic parametrizations at ECMWF. ECMWF Newsletter, No. 129, ECMWF, Reading, United Kingdom, 19–24, https://doi.org/10.21957/fbqmkhv7.

    • Crossref
    • Export Citation
  • Thornes, T., P. D. Düben, and T. N. Palmer, 2017: On the use of scale-dependent precision in earth system modelling. Quart. J. Roy. Meteor. Soc., 143, 897908, https://doi.org/10.1002/qj.2974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornes, T., P. D. Düben, and T. N. Palmer, 2018: A power law for reduced precision at small spatial scales: Experiments with an SQG model. Quart. J. Roy. Meteor. Soc., 144, 11791188, https://doi.org/10.1002/qj.3303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Váňa, F., P. D. Düben, S. Lang, T. N. Palmer, M. Leutbecher, D. Salmond, and G. Carver, 2017: Single precision in weather forecasting models: An evaluation with the IFS. Mon. Wea. Rev., 145, 495502, https://doi.org/10.1175/MWR-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., S. Corti, T. Palmer, and F. Vitart, 2014: Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system. Philos. Trans. Roy. Soc. London, 372A, 2018, https://doi.org/10.1098/rsta.2013.0290.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, https://doi.org/10.1175/JAM2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuras, D., and Coauthors, 2008: IEEE standard for floating-point arithmetic. IEEE Std. 754–2008, 70 pp., https://doi.org/10.1109/IEEESTD.2008.4610935.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 790 216 14
PDF Downloads 576 126 10