The Representation of the South Pacific Convergence Zone in the Twentieth Century Reanalysis

Thomas Harvey Victoria University of Wellington, Wellington, New Zealand

Search for other papers by Thomas Harvey in
Current site
Google Scholar
PubMed
Close
,
James A. Renwick Victoria University of Wellington, Wellington, New Zealand

Search for other papers by James A. Renwick in
Current site
Google Scholar
PubMed
Close
,
Andrew M. Lorrey National Institute of Water and Atmospheric Research, Auckland, New Zealand

Search for other papers by Andrew M. Lorrey in
Current site
Google Scholar
PubMed
Close
, and
Arona Ngari Cook Islands Meteorological Service, Nikao, Rarotonga, Cook Islands

Search for other papers by Arona Ngari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The South Pacific convergence zone (SPCZ) is the largest rainfall feature in the Southern Hemisphere, and is a critical component of the climate for South Pacific island nations and territories. The small size and isolated nature of these islands leaves them vulnerable to short- and long-term changes in the position of the SPCZ. Its position and strength is strongly modulated by El Niño–Southern Oscillation (ENSO), leading to large interannual variability in rainfall across the southwest Pacific including seasonal droughts and pluvials. Currently much of the analysis about SPCZ activity has been restricted to the satellite observation period starting in 1979. Here, the representation of the SPCZ in the Twentieth Century Reanalysis (20CR), which is a three-dimensional atmospheric reconstruction based only on surface observations, is discussed for the period since 1908. The performance of two versions of the 20CR (version 2 and version 2c) in the satellite era is compared with other reanalyses and climate observation products. The 20CR performs well in the satellite era. Extra surface observations spanning the SPCZ region from the longitude of the Cook Islands has improved the representation of the SPCZ during 1908–57 between 20CRv2 and 20CRv2c. The well-established relationship with ENSO is observed in both the representation of mean SPCZ position and intensity, and this relationship remains consistent through the entire 1908–2011 period. This suggests that the ENSO–SPCZ relationship has remained similar over the course of the past century, and gives further evidence that 20CRv2c performs well back to 1908 over the southwest Pacific region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: james.renwick@vuw.ac.nz

Abstract

The South Pacific convergence zone (SPCZ) is the largest rainfall feature in the Southern Hemisphere, and is a critical component of the climate for South Pacific island nations and territories. The small size and isolated nature of these islands leaves them vulnerable to short- and long-term changes in the position of the SPCZ. Its position and strength is strongly modulated by El Niño–Southern Oscillation (ENSO), leading to large interannual variability in rainfall across the southwest Pacific including seasonal droughts and pluvials. Currently much of the analysis about SPCZ activity has been restricted to the satellite observation period starting in 1979. Here, the representation of the SPCZ in the Twentieth Century Reanalysis (20CR), which is a three-dimensional atmospheric reconstruction based only on surface observations, is discussed for the period since 1908. The performance of two versions of the 20CR (version 2 and version 2c) in the satellite era is compared with other reanalyses and climate observation products. The 20CR performs well in the satellite era. Extra surface observations spanning the SPCZ region from the longitude of the Cook Islands has improved the representation of the SPCZ during 1908–57 between 20CRv2 and 20CRv2c. The well-established relationship with ENSO is observed in both the representation of mean SPCZ position and intensity, and this relationship remains consistent through the entire 1908–2011 period. This suggests that the ENSO–SPCZ relationship has remained similar over the course of the past century, and gives further evidence that 20CRv2c performs well back to 1908 over the southwest Pacific region.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: james.renwick@vuw.ac.nz
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borlace, S., A. Santoso, W. Cai, and M. Collins, 2014: Extreme swings of the South Pacific Convergence Zone and the different types of El Niño events. Geophys. Res. Lett., 41, 46954703, https://doi.org/10.1002/2014GL060551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., S. B. Power, F. P. Delage, R. A. Colman, A. F. Moise, and B. F. Murphy, 2011: Evaluation of the South Pacific convergence zone in IPCC AR4 climate model simulations of the twentieth century. J. Climate, 24, 15651582, https://doi.org/10.1175/2010JCLI3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., A. F. Moise, and F. P. Delage, 2012: Changes in the South Pacific Convergence Zone in IPCC AR4 future climate projections. Climate Dyn., 39, 119, https://doi.org/10.1007/s00382-011-1192-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., A. F. Moise, and R. A. Colman, 2013: The South Pacific convergence zone in CMIP5 simulations of historical and future climate. Climate Dyn., 41, 21792197, https://doi.org/10.1007/s00382-012-1591-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2012: More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature, 488, 365369, https://doi.org/10.1038/nature11358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chappell, P. R., and A. M. Lorrey, 2014: Identifying New Zealand, Southeast Australia, and Southwest Pacific historical weather data sources using Ian Nicholson’s Log of Logs. Geosci. Data J., 1, 4960, https://doi.org/10.1002/gdj3.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Cram, T. A., and Coauthors, 2015: The International Surface Pressure Databank version 2. Geosci. Data J., 2, 3146, https://doi.org/10.1002/gdj3.25.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., A. M. Lorrey, and J. A. Renwick, 2013: A southwest Pacific tropical cyclone climatology and linkages to the El Niño–Southern Oscillation. J. Climate, 26, 325, https://doi.org/10.1175/JCLI-D-12-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C., J. Renwick, M. Salinger, and A. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, https://doi.org/10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haffke, C., and G. Magnusdottir, 2013: The South Pacific Convergence Zone in three decades of satellite images. J. Geophys. Res. Atmos., 118, 10 83910 849, https://doi.org/10.1002/jgrd.50838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, L. F., 1961: A subtropical convergence line of the South Pacific: A case study using meteorological satellite data. J. Geophys. Res., 66, 797812, https://doi.org/10.1029/JZ066i003p00797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidwell, A., T. Lee, Y.-H. Jo, and X.-H. Yan, 2016: Characterization of the variability of the South Pacific convergence zone using satellite and reanalysis wind products. J. Climate, 29, 17171732, https://doi.org/10.1175/JCLI-D-15-0536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., H. Von Storch, and H. Loon, 1989: Origin of the South Pacific convergence zone. J. Climate, 2, 11851195, https://doi.org/10.1175/1520-0442(1989)002<1185:OOTSPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2008: Eastern margin variability of the South Pacific convergence zone. Geophys. Res. Lett., 35, L16701, https://doi.org/10.1029/2008GL034298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorrey, A., G. Dalu, J. Renwick, H. Diamond, and M. Gaetani, 2012: Reconstructing the South Pacific convergence zone position during the presatellite era: A La Niña case study. Mon. Wea. Rev., 140, 36533668, https://doi.org/10.1175/MWR-D-11-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2012: A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Quart. J. Roy. Meteor. Soc., 138, 11651178, https://doi.org/10.1002/qj.1870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, J. M. Slingo, and M. Blackburn, 1996: Development of convection along the SPCZ within a Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 122, 669688, https://doi.org/10.1002/qj.49712253106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 1740–1745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Export Citation
  • Niznik, M. J., B. R. Lintner, A. J. Matthews, and M. J. Widlansky, 2015: The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific convergence zone in CMIP5 models. J. Climate, 28, 33533374, https://doi.org/10.1175/JCLI-D-14-00527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Streten, N. A., and A. Troup, 1973: A synoptic climatology of satellite observed cloud vortices over the Southern Hemisphere. Quart. J. Roy. Meteor. Soc., 99, 5672, https://doi.org/10.1002/qj.49709941906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007: Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Climate, 20, 56965706, https://doi.org/10.1175/2007JCLI1656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, https://doi.org/10.1002/qj.49710243310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. ClimateChange 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Van Der Wiel, K., A. J. Matthews, D. P. Stevens, and M. M. Joshi, 2015: A dynamical framework for the origin of the diagonal South Pacific and South Atlantic convergence zones. Quart. J. Roy. Meteor. Soc., 141, 19972010, https://doi.org/10.1002/qj.2508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Der Wiel, K., A. J. Matthews, M. M. Joshi, and D. P. Stevens, 2016: The influence of diabatic heating in the South Pacific Convergence Zone on Rossby wave propagation and the mean flow. Quart. J. Roy. Meteor. Soc., 142, 901910, https://doi.org/10.1002/qj.2692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, D. G., 1994: The South Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 19491970, https://doi.org/10.1175/1520-0493(1994)122<1949:TSPCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, https://doi.org/10.1007/s00382-009-0716-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J.-Y. Yu, P. DiNezio, and A. Clement, 2017: El Niño and Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, P. W. Glynn, D. Manzello, and I. C. Enochs, Eds., Springer, 85–106.

    • Crossref
    • Export Citation
  • Widlansky, M. J., P. J. Webster, and C. D. Hoyos, 2011: On the location and orientation of the South Pacific Convergence Zone. Climate Dyn., 36, 561578, https://doi.org/10.1007/s00382-010-0871-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315324, https://doi.org/10.1002/j.1477-8696.1998.tb06408.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1160 510 13
PDF Downloads 826 191 9