A 13-Year Global Climatology of Tropical Cyclone Warm-Core Structures from AIRS Data

Xiang Wang Joint Centre for Data Assimilation Research and Application, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Xiang Wang in
Current site
Google Scholar
PubMed
Close
and
Haiyan Jiang Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Haiyan Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is uncertainty as to whether the typical warm-core structure of tropical cyclones (TCs) is featured as an upper-level warm core or not. It has been hypothesized that data from the satellite-borne Advanced Microwave Sounding Unit (AMSU) are inadequate to resolve a realistic TC warm-core structure. This study first evaluates 13 years of Atmospheric Infrared Sounder (AIRS) temperature retrieval against recent dropsonde measurements in TCs. AIRS can resolve the TC warm-core structure well, comparable to the dropsonde observations, although the AMSU-A retrievals fail to do so. Using 13-yr AIRS data in global TCs, a global climatology of the TC warm-core structure is generated in this study. The typical warm-core height is at the upper level around 300–400 hPa for all TCs and increases with TC intensity: 400 hPa (~8 km) for tropical storms, 300 hPa (~10 km) for category 1–3 hurricanes, 250–300 hPa (~10–11 km) for category 4 hurricanes, and 150 hPa (~14 km) for category 5 hurricanes. The range of warm-core height varies with TC intensity as well. A strong correlation between TC intensity and warm-core strength is found. A weaker but still significant correlation between TC intensity and warm-core height is also found.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 18 May 2021 to correct mistaken funder information in the Acknowledgments section in the originally published article.

Corresponding author: Dr. Haiyan Jiang, haiyan.jiang@fiu.edu

Abstract

There is uncertainty as to whether the typical warm-core structure of tropical cyclones (TCs) is featured as an upper-level warm core or not. It has been hypothesized that data from the satellite-borne Advanced Microwave Sounding Unit (AMSU) are inadequate to resolve a realistic TC warm-core structure. This study first evaluates 13 years of Atmospheric Infrared Sounder (AIRS) temperature retrieval against recent dropsonde measurements in TCs. AIRS can resolve the TC warm-core structure well, comparable to the dropsonde observations, although the AMSU-A retrievals fail to do so. Using 13-yr AIRS data in global TCs, a global climatology of the TC warm-core structure is generated in this study. The typical warm-core height is at the upper level around 300–400 hPa for all TCs and increases with TC intensity: 400 hPa (~8 km) for tropical storms, 300 hPa (~10 km) for category 1–3 hurricanes, 250–300 hPa (~10–11 km) for category 4 hurricanes, and 150 hPa (~14 km) for category 5 hurricanes. The range of warm-core height varies with TC intensity as well. A strong correlation between TC intensity and warm-core strength is found. A weaker but still significant correlation between TC intensity and warm-core height is also found.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 18 May 2021 to correct mistaken funder information in the Acknowledgments section in the originally published article.

Corresponding author: Dr. Haiyan Jiang, haiyan.jiang@fiu.edu
Save
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/ HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M.T., and Coauthors, 2001: AIRS level 2 unified retrieval for core products ATBD. NASA GSFC, accessed 18 September 2017, http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd.

  • Chahine, M.T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146172, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. H. Zhou, and X. P. Liu, 2006: Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111, D09S15, https://doi.org/10.1029/2005JD006116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2018: Dramatic inner-core tropopause variability during the rapid intensification of Hurricane Patricia (2015). Mon. Wea. Rev., 146, 119134, https://doi.org/10.1175/MWR-D-17-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 42564268, https://doi.org/10.1175/MWR-D-13-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S., B. C. Chen, T. Li, N. Wu, and W. Deng, 2017: AIRS-observed warm core structures of tropical cyclones over the western North Pacific. Dyn. Atmos. Oceans, 77, 100106, https://doi.org/10.1016/j.dynatmoce.2016.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., 2004: Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments. Geophys. Res. Lett., 31, L22107, https://doi.org/10.1029/2004GL020730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high-altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, https://doi.org/10.1175/JAS3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II: Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, https://doi.org/10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean sounding for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 12411260, https://doi.org/10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., V. Tallapragada, D.-L. Zhang, and Z. Moon, 2016: On the development of double warm cores in intense tropical cyclones. J. Atmos. Sci., 73, 44874506, https://doi.org/10.1175/JAS-D-16-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, https://doi.org/10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2015: Hurricane wind–pressure relationship and eyewall replacement cycles. Wea. Forecasting, 30, 177181, https://doi.org/10.1175/WAF-D-14-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaSeur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694709, https://doi.org/10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, S. A. Braun, J. A. Sippel, and A. C. Didlake, 2018: The inner-core temperature structure of Hurricane Edouard (2014): Observations and ensemble variability. Mon. Wea. Rev., 146, 135155, https://doi.org/10.1175/MWR-D-17-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohno, T., M. Satoh, and Y. Yamada, 2016: Warm cores, eyewall slopes, and intensities of tropical cyclones simulated by a 7-km-mesh global nonhydrostatic model. J. Atmos. Sci., 73, 42894309, https://doi.org/10.1175/JAS-D-15-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, https://doi.org/10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013b: How does the eye warm? Part II: Sensitivity to vertical wind shear and a trajectory analysis. J. Atmos. Sci., 70, 18491873, https://doi.org/10.1175/JAS-D-12-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73, 33053328, https://doi.org/10.1175/JAS-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. Barnet, and J. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, https://doi.org/10.1109/TGRS.2002.808236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, https://doi.org/10.1029/2005JD006103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, M. Schreier, G. Manipon, E. F. Fishbein, B. H. Kahn, Q. Yue, and F. W. Irion, 2015: Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity. J. Geophys. Res. Atmos., 120, 18801901, https://doi.org/10.1002/2014JD022440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., E. J. Fetzer, B. H. Kahn, S. Wong, G. Manipon, A. Guillaume, and B. Wilson, 2013: Cloud-state-dependent sampling in AIRS observations based on CloudSat cloud classification. J. Climate, 26, 83578377, https://doi.org/10.1175/JCLI-D-13-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, https://doi.org/10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, https://doi.org/10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., and F. Weng, 2013: Hurricane Sandy warm-core structure observed from advanced technology microwave sounder. Geophys. Res. Lett., 40, 33253330, https://doi.org/10.1002/grl.50626.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6 0 0
Full Text Views 1289 468 65
PDF Downloads 993 254 12