The Impact of the Amazon–Orinoco River Plume on Enthalpy Flux and Air–Sea Interaction within Caribbean Sea Tropical Cyclones

Johna E. Rudzin Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Johna E. Rudzin in
Current site
Google Scholar
PubMed
Close
,
Lynn K. Shay Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Lynn K. Shay in
Current site
Google Scholar
PubMed
Close
, and
Benjamin Jaimes de la Cruz Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Benjamin Jaimes de la Cruz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of the Amazon–Orinoco River plume in the Caribbean Sea on latent and sensible heat flux (enthalpy flux) and tropical cyclone (TC) intensity is investigated for Hurricanes Ivan (2004), Emily (2005), Dean (2007), and Felix (2007) using dropwindsonde data, satellite sea surface temperature (SST), and the SMARTS climatology. Relationships among enthalpy fluxes, ocean heat content relative to the 26°C isotherm depth (OHC), and SST during storm passage are diagnosed. Results indicate that sea surface cooling in the river plume, a low-OHC region, is comparable to that in the warm eddy region, which has high OHC. An isothermal layer heat budget shows that upper-ocean cooling in the river plume can be explained predominantly by sea-to-air heat flux, rather than by entrainment flux from the thermocline. The latter two findings suggest that relatively large upper-ocean stratification in the plume regime limited entrainment cooling, sustaining SST and enthalpy flux. Inspection of atmospheric variables indicates that deep moderate wind shear is prevalent, and equivalent potential temperature is enhanced over the river plume region for most of these storms. Thus, sustained surface fluxes in this region may have provided warm, moist boundary layer conditions, which may have helped these storms to rapidly intensify even over relatively low-OHC waters and moderate shear. These findings are important because several Caribbean Sea TCs, including these cases, have been underforecast with respect to intensity and/or rapid intensifications, yet minimal upper-ocean observations exist to understand air–sea interaction during TCs in the salinity-stratified Amazon–Orinoco plume regime.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johna E. Rudzin, jrudzin@rsmas.miami.edu

Abstract

The influence of the Amazon–Orinoco River plume in the Caribbean Sea on latent and sensible heat flux (enthalpy flux) and tropical cyclone (TC) intensity is investigated for Hurricanes Ivan (2004), Emily (2005), Dean (2007), and Felix (2007) using dropwindsonde data, satellite sea surface temperature (SST), and the SMARTS climatology. Relationships among enthalpy fluxes, ocean heat content relative to the 26°C isotherm depth (OHC), and SST during storm passage are diagnosed. Results indicate that sea surface cooling in the river plume, a low-OHC region, is comparable to that in the warm eddy region, which has high OHC. An isothermal layer heat budget shows that upper-ocean cooling in the river plume can be explained predominantly by sea-to-air heat flux, rather than by entrainment flux from the thermocline. The latter two findings suggest that relatively large upper-ocean stratification in the plume regime limited entrainment cooling, sustaining SST and enthalpy flux. Inspection of atmospheric variables indicates that deep moderate wind shear is prevalent, and equivalent potential temperature is enhanced over the river plume region for most of these storms. Thus, sustained surface fluxes in this region may have provided warm, moist boundary layer conditions, which may have helped these storms to rapidly intensify even over relatively low-OHC waters and moderate shear. These findings are important because several Caribbean Sea TCs, including these cases, have been underforecast with respect to intensity and/or rapid intensifications, yet minimal upper-ocean observations exist to understand air–sea interaction during TCs in the salinity-stratified Amazon–Orinoco plume regime.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johna E. Rudzin, jrudzin@rsmas.miami.edu
Save
  • Androulidakis, Y., V. Kourafalou, G. Halliwell, M. Le Hénaff, H. Kang, M. Mehari, and R. Atlas, 2016: Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region. Ocean Dyn., 66, 15591588, https://doi.org/10.1007/s10236-016-0997-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argo, 2018: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, https://doi.org/10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J., 2008: Tropical cyclone report: Hurricane Felix. National Hurricane Center Rep. AL062007, 14 pp., https://www.nhc.noaa.gov/data/tcr/AL062007_Felix.pdf.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532, https://doi.org/10.1175/1520-0450(1981)020>1527:NEFCVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, https://doi.org/10.1175/1520-0493(2000)128>1550:SOITHE>2.0.CO;2.</jrn.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., E. A. Kalina, J. A. Zhang, and E. W. Uhlhorn, 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, https://doi.org/10.1175/MWR-D-12-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective analyses, data statistics, and figures. National Oceanographic Data Center Internal Rep. 17, 21 pp., https://repository.library.noaa.gov/view/noaa/1174/noaa_1174_DS1.pdf?.

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2008: Tropical cyclone report: Hurricane Dean. National Hurricane Center Rep. AL042007, 23 pp., https://www.nhc.noaa.gov/data/tcr/AL042007_Dean.pdf.

  • Franklin, J. L., and D. P. Brown, 2006: Tropical cyclone report: Hurricane Emily. National Hurricane Center Rep. AL052005, 18 pp., https://www.nhc.noaa.gov/data/tcr/AL052005_Emily.pdf.

  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, https://doi.org/10.1175/JAS-D-13-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., and Coauthors, 2009: MISST: The Multi-Sensor Improved Sea Surface Temperature project. Oceanography, 22 (2), 7687, https://doi.org/10.5670/oceanog.2009.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and Coauthors, 2012: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett., 39, L20603, https://doi.org/10.1029/2012GL053335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G., L. K. Shay, J. K. Brewster, and W. J. Teague, 2011: Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon. Wea. Rev., 139, 921945, https://doi.org/10.1175/2010MWR3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., and R. E. Hart, 2013: Hurricane eyewall slope as determined from airborne radar reflectivity data: Composites and case studies. Wea. Forecasting, 28, 368386, https://doi.org/10.1175/WAF-D-12-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez, O., J. Jouanno, and F. Durand, 2016: Do the Amazon and Orinoco freshwater plumes really matter for hurricane-induced ocean surface cooling? J. Geophys. Res. Oceans, 121, 21192141, https://doi.org/10.1002/2015JC011021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C., E. T. Montgomery, R. W. Schmitt, and F. E. Müller-Karger, 2004: The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: Observation from space and S-PALACE floats. Deep-Sea Res. II, 51, 11511171, https://doi.org/10.1016/S0967-0645(04)00105-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, https://doi.org/10.1175/2010JPO4309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JPL MUR MEaSUREs Project, 2010: GHRSST level 4 MUR global foundation sea surface temperature analysis, version 2. PO.DAAC, accessed 24 Jan 2019, https://doi.org/10.5067/GHGMR-4FJ01.

    • Crossref
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106, https://doi.org/10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and R. Limeburner, 1995: The Amazon River plume during AMASSEDS: Spatial characteristics and salinity variability. J. Geophys. Res., 100, 23552375, https://doi.org/10.1029/94JC01411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, https://doi.org/10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and Coauthors, 2013: An ocean cooling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, https://doi.org/10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, P. C., L. K. Shay, and J. K. Brewster, 2014: Development and analysis of the systematically merged Atlantic regional temperature and salinity climatology for oceanic heat content estimates. J. Atmos. Oceanic Technol., 31, 131149, https://doi.org/10.1175/JTECH-D-13-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., C. de Boyer Montégut, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the World Ocean: 2. Tropical areas. J. Geophys. Res., 112, C10010, https://doi.org/10.1029/2006JC003954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., A. Lazar, and M. Lacarra, 2012: On the formation of barrier layers and associated vertical temperature inversions: A focus on the northwestern tropical Atlantic. J. Geophys. Res., 117, C02010, https://doi.org/10.1029/2011JC007435.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Distribution of helicity, CAPE, and shear in tropical cyclones. J. Atmos. Sci., 67, 274284, https://doi.org/10.1175/2009JAS3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, https://doi.org/10.1175/JAS3291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. D. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, https://doi.org/10.1175/JAS3591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, https://doi.org/10.1175/MWR-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neetu, S., M. Lengaigne, E. M. Vincent, J. Vialard, G. Madec, G. Samson, M. R. Ramesh Kumar, and F. Durand, 2012: Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. Res., 117, C12020, https://doi.org/10.1029/2012JC008433.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378, https://doi.org/10.1175/MWR-D-11-00293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, 908931, https://doi.org/10.1002/2016MS000796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pailler, K., B. Bourlès, and Y. Gouriou, 1999: The barrier layer in the western tropical Atlantic Ocean. Geophys. Res. Lett., 26, 20692072, https://doi.org/10.1029/1999GL900492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmén, E., 1948: On the formation and structure of tropical hurricanes. Geophysika, 3, 2638.

  • Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 36443660, https://doi.org/10.1175/MWR3041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, https://doi.org/10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., Y. Quilfen, B. Chapron, S. Fournier, V. Kudryavtsev, and R. Sabia, 2014: Multisensor observations of the Amazon-Orinoco River plume interactions with hurricanes. J. Geophys. Res. Oceans, 119, 82718295, https://doi.org/10.1002/2014JC010107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, https://doi.org/10.1175/JAS-D-14-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, https://doi.org/10.5194/acp-13-327-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, B. Jaimes, and J. K. Brewster, 2017: Upper ocean observations in eastern Caribbean Sea reveal barrier layer within a warm core eddy. J. Geophys. Res. Oceans, 122, 10571071, https://doi.org/10.1002/2016JC012339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, and W. E. Johns, 2018: The influence of the barrier layer on SST response during tropical cyclone wind forcing using idealized experiments. J. Phys. Oceanogr., 48, 14711478, https://doi.org/10.1175/JPO-D-17-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and E. W. Uhlhorn, 2008: Loop Current response to Hurricanes Isidore and Lili. Mon. Wea. Rev., 136, 32483274, https://doi.org/10.1175/2007MWR2169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shelton, K., and J. Molinari, 2009: Life of a six-hour hurricane. Mon. Wea. Rev., 137, 5167, https://doi.org/10.1175/2008MWR2472.1.

  • Simpson, R., and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4-1–D4-10.

  • Sprintall, J., and M. J. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 73057316, https://doi.org/10.1029/92JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2004: Tropical cyclone report: Hurricane Ivan. National Hurricane Center Re. AL092004, 44 pp., https://www.nhc.noaa.gov/data/tcr/AL092004_Ivan.pdf.

  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, https://doi.org/10.1175/JAS-D-11-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, https://doi.org/10.1002/2014MS000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and L. K. Shay, 2012: Loop current mixed layer energy response to Hurricane Lili (2002). Part I: Observations. J. Phys. Oceanogr., 42, 400419, https://doi.org/10.1175/JPO-D-11-096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vissa, N. K., A. N. V. Satyanarayana, and B. P. Kumar, 2013: Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Sci. J., 48, 279288, https://doi.org/10.1007/s12601-013-0026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. A. Zhang, B. Jaimes, and L. K. Shay, 2018: Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Mon. Wea. Rev., 146, 35453565, https://doi.org/10.1175/MWR-D-18-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Han, Y. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, https://doi.org/10.1016/j.dynatmoce.2011.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. L., and J. C. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876, https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y., L. Li, and C. Wang, 2017: The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans, 122, 48294844, https://doi.org/10.1002/2017JC012694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, https://doi.org/10.1029/2008GL034374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks Jr., 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. J. Cione, E. A. Kalina, E. W. Uhlhorn, T. Hock, and J. A. Smith, 2017: Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 13331349, https://doi.org/10.1175/JTECH-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 976 338 26
PDF Downloads 702 200 15